

ANNA UNIVERSITY, CHENNAI UNDERGRADUATE CURRICULUM (UNIVERSITY DEPARTMENTS)

Campus: MIT

Department: AUTOMOBILE ENGINEERING

Programme: B.E AUTOMOBILE ENGINEERING

Regulations: 2023 (Revised 2024), with effect from the AY 2024 – 25 to all the students of UG Programme.

Sem	PCC	PEC	ESC	HSMC	ETC	OEC	SDC	UC	SLC	Total
I	0	0	4	11	0	0	4	1	0	23
н	0	0	4	14	0	0	3	1	0	22
ш	4	0	12	4	0	0	2	2	0	24
IV	22	0	0	0	0	0	2	0	0	24
v	16	0	0	0	0	3	3	4	0	26
VI	0	18	0	0	3	3	1	0	1	26
VII	16	0	0	0	3	0	1	3	0	23
VIII	0	0	0	0	0	0	8	0	0	8
Total	58	18	23	29	6	6	24	11	1	176
% of Category	32.95	10.23	13.07	16.48	3.4	3.4	13.64	6.25	0.58	100

OVERVIEW OF CREDITS

CATEGORY OF COURSES

PCC – Professional Core Course

PEC – Professional Elective Course Course

ETC – Emerging Technology Course

OEC – Open Elective Course

SLC – Self Learning Course

ESC – Engineering Science Course HSMC – Humanities Science and Management

SDC – Skill Development Course

UC – University Course

*For Honours & Minor Degree, please refer the Regulations 2023 (Revised 2024).

	Semester – I									
S.	Course Code	Course Name	Course	_	ods / eek	Credits	Category			
No.			Type [#]	L-T-P	TCP*					
1	EN23C01	Foundation English	LIT	2-0-2	4	3	HSMC			
2	MA23C01	Matrices and Calculus	Т	3-1-0	4	4	HSMC			
3	PH23C01	Engineering Physics	LIT	3-0-2	5	4	HSMC			
4	ME23C01	Engineering Drawing and 3D Modelling	LIT	2-0-4	6	4	SDC			
5	EE23C03	Basics of Electrical and Electronics Engineering	LIT	2-0-2	4	3	ESC			
6	CS23C02	Computer Programming in Python	LIT	3-0-2	5	4	ESC			
7	UC23H01	தமிழர் மரபு / Heritage of Tamils	Т	1-0-0	1	1	UC			
8		NCC / NSS / NSO / YRC	L	0-0-2	2	0	UC			
	·		-	Total Cr	edits	23				

* TCP - Total Contact Period(s)

*<u>TYPE OF COURSE</u>

- LIT Laboratory Integrated Theory
- T Theory
- L Laboratory Course
- IPW Internship cum Project Work
- **PW** Project Work
- **CDP** Capstone Design Project

		Semester –	II				
S. No.	Course Code	Course Name	Course Type [#]	Periods / Week		Credits	Category
				L-T-P	TCP*		
1	EN23C02	Professional Communication	LIT	2-0-2	4	3	HSMC
2	MA23C02	Ordinary Differential Equations and Transform Techniques	Т	3-1-0	4	4	HSMC
3	PH23C04	Fundamentals of Materials Science and Engineering	Т	3-0-0	3	3	HSMC
4	CY23C01	Engineering Chemistry	LIT	3-0-2	5	4	HSMC
5	ME23C04	Makerspace	LIT	1-0-4	5	3	SDC
6	ME23C03	Engineering Mechanics	Т	3-1-0	4	4	ESC
7	UC23H02	தமிழரும் தொழில் நுட்பமும் / Tamils and Technology	Т	1-0-0	1	1	UC
8	-	Audit Course–I	-	-	-	-	UC
				Total Cr	edits	22	

	SEMESTER – III									
S.	COURSE CODE	COURSE NAME	COURSE	PERIC WE			CATEGORY			
NO.			TYPE [#]	L-T-P	TCP*					
1	MA23C06	Partial Differential Equations and	т	3-1-0	4	4	HSMC			
I	IVIA23000	Complex Functions	1 3-	5-1-0	4	4	TISIME			
S	2 AU23301	Manufacturing Processes and	LIT	3-0-2	5	4	ESC			
2	A023301	Machine Tools	LII	5-0-2	5		L00			
3	AU23C01	Applied Thermodynamics	LIT	3-0-2	5	4	ESC			
4	AU23C02	Mechanics of Solids	LIT	3-0-2	5	4	ESC			
5	AU23302	Automotive Engines	LIT	3-0-2	5	4	PCC			
6		Skill Development Course Level –II	Т	2-0-0	2	2	SDC			
8	UC23U01	Universal Human Values	LIT	1-0-2	3	2	UC			
	1		тот	AL CRE	DITS	24				

SEMESTER – IV									
S. NO.	COURSE CODE	COURSE NAME	COURSE TYPE [#]	PERIC WE		CREDITS	CATEGORY		
NO.			TIFE	L-T-P	TCP*				
1	AU23401	Automotive Chassis	LIT	3-0-2	5	4	PCC		
2	AU23402	Vehicle Body Engineering and Ergonomics.	Т	3-0-0	3	3	PCC		
3	AU23403	Fluid Mechanics for Automotive Applications	LIT	3-0-2	5	4	PCC		
4	AU23404	Kinematics and Dynamics for Automotive Applications	Т	3-0-0	3	3	PCC		
5	AU23405	Fuels, Lubricants and Coolants	LIT	3-0-2	5	4	PCC		
6	AU23406	Automotive Pollution and Control	LIT	3-0-2	5	4	PCC		
7		Skill Development Course – Level II	Т	2-0-0	2	2	SDC		
8		Audit Course–II	-	-	-	-	UC		
			тот	AL CRE	DITS	24			

		Semester -	- V				
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1	AU23501	Engineering Design	LIT	3-0-2	5	4	PCC
2	AU23502	Automotive Transmission	LIT	3-0-2	5	4	PCC
3	AU23503	Automotive Electrical and Electronics Systems	LIT	3-0-2	5	4	PCC
4	AU23504	Vehicle Maintenance and Testing	LIT	3-0-2	5	4	PCC
5		Open Elective – I*	Т	3-0-0	3	3	OEC
6		Industry Oriented Course – I	-	-		1	SDC
7	UC23E01	Engineering Entrepreneurship Development	LIT	2-0-2	4	3	UC
8	AU23U01	Standards - Automobile Engineering	Т	1-0-0	1	1	UC
9	AU23505	Summer internship	IPW	0-0-4	4	2	SDC
			•	Total C	edits	26	
	-	Courses for Honor	urs Degre				
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		e alleger y
1.	AU23D01	Capstone Design Project-Level I	CDP	0-0-12	12	6	SDC
		(OR)					
1.		Honours Elective – I	Т	3-0-0	3	3	SDC
2.		Honours Elective – II	Т	3-0-0	3	3	SDC
	-	Courses for Mind	or Degree				
S.	Course	Course Name	Course Week			Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1.		Minor Elective – I	Т	3-0-0	3	3	SDC
2.		Minor Elective – II	Т	3-0-0	3	3	SDC

	Semester – VI (Preference for Foreign Exchange)									
S.	Course	Course Name	Course	Periods / Week		Credits	Category			
No. Code		Type [#]	L-T-P	TCP*						
1		Professional Elective – I	Т	3-0-0	3	3	PEC			
2		Professional Elective – II	Т	3-0-0	3	3	PEC			
3		Professional Elective – III	Т	3-0-0	3	3	PEC			
4		Professional Elective – IV	Т	3-0-0	3	3	PEC			
5		Professional Elective – V	Т	3-0-0	3	3	PEC			
6		Professional Elective – VI	Т	3-0-0	3	3	PEC			
7		Open Elective – II*	Т	3-0-0	3	3	OEC			

		Semester – VI (Preference for	r Foreign	Exchan	ige)		
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*	orcato	outegory
8	AU23E01	Emerging Technology Course – I	Т	3-0-0	3	3	ETC
9		Industry Oriented Course –II	-	-	-	1	SDC
10	AU23L01	Self-Learning Course*	Т	1-0-0	1	1	SLC
			1	Total Cro	edits	26	
		Courses for Hono	urs Degre	e		L	
S.	Course	Course Name	Course	Periods Week	s /	Credits	Category
No.	Code		Туре [#]	L-T-P	TCP*		5,
1.	AU23D02	Capstone Design Project-Level II	CDP	0-0-12	12	6	SDC
		(OR)	1	L	r.	L	
1.		Honours Elective – III	Т	3-0-0	3	3	SDC
2.		Honours Elective – IV	Т	3-0-0	3	3	SDC
		Courses for Mine	or Degree	•	1		
S.	Course		Course	Peric			
5. No.	Code	Course Name	Type [#]	We L-T-P	ek TCP*	Credits	Category
1.		Minor Elective – III	Т	3-0-0	3	3	SDC
2.		Minor Elective – IV	Т	3-0-0	3	3	SDC
		Semester –	VII				
S.	Course		Course	Perio			
No.	Code	Course Name	Type [#]	We L-T-P	TCP*	Credits	Category
1	AU23701	Design of Vehicle Components	LIT	3-0-2	5	4	PCC
2	AU23702	Electric and Hybrid Vehicles	LIT	3-0-2	5	4	PCC
3	AU23703	Vehicle Dynamics	LIT	3-0-2	5	4	PCC
4	AU23704	IC Engine Process Modeling	LIT	3-0-2	5	4	PCC
5	AU23E01	Emerging Technology Course – II	Т	3-0-0	3	3	ETC
6		Industry Oriented Course –III/ Industrial case study	Т	1-0-0	1	1	SDC
7	AU23U02	Perspectives of Sustainable Development in Automobile	LIT	2-0-2	4	3	UC
			1	Total Cre	edits	23	
		Courses for Hono	urs Degre			1	1
S.	Course		Course	Perio We		Ore all (-	Cataore
No.	Code	Course Name	Type [#]	L-T-P	TCP*	Credits	Category
1.	AU23D03	Capstone Design Project – Level III	CDP	0-0-12	12	6	SDC
		(OR)			•=	~	
4		Honours Elective – V	Т	3-0-0	3	3	SDC
1.							

		Semester – VI (Preference for	^r Foreign	Exchar	ige)					
S.	Course	Course Name	Course Type [#]	Periods / Week		Credits	Category			
No.	Code		L-T-P	TCP*						
	Courses for Minor Degree									
S.	Course	Course Name	Course	Peric We		Credits	Category			
No.	Code		Type [#]	L-T-P	TCP*		enegery			
1.		Minor Elective – V	Т	3-0-0	3	3	SDC			
			Т	3-0-0	3	3	SDC			

	Semester – VIII									
S. Course No. Code	Course Name	Name Course Type [#]	Periods / Week		Credits	Category				
	oouo		1,100	L-T-P	TCP*					
1.	AU23801	Project Work / Internship cum Project Work	PW/IPW	0-0-16	16	8	SDC			
	Total Credits 8									

PROFESSIONAL ELECTIVE COURSES(PEC) – VERTICALS

SI. No.	Vertical 1 Advanced Vehicle Technology	Vertical 2 Advanced Engine Technology	Vertical 3 Vehicle Design	Vertical 4 Electric Vehicle Technology	Vertical 5 Advance Technologies	Vertical 6 Diversified Technologies
1.	Special Purpose Vehicles	Engine Management Systems	Vehicle Design data Characteristics	Batteries and Management system	Nanoscience Technology	Principles of Control Systems
2.	Two and Three- Wheeler Technology	Alternative and Advanced Fuels for IC engines.	Geometric Dimension and tolerances	Traction Motors	Manufacturing of Automotive Components	Noise, Vibration and Harshness for Automobiles
3.	Road Vehicle Aerodynamics	Advanced Theory of IC Engines	Metrology and Measurement System	Power Electronics for Electric Vehicle Application	IoT for Electric Vehicles	Vehicle air Conditioning
4.	Vehicle Control Systems	Combustion Thermodynamics and Heat Transfer	New Product Development	Autonomous and Connected Vehicles	Homologation and Certification	Hydraulic and Pneumatic Systems
5.	Advance Automotive Materials	Engine Computational Fluid Dynamics	Reverse Engineering for automobiles	Artificial Intelligence for Vehicles	Additive Manufacturing	Transport Management
6.	Automotive Safety	Supercharging and scavenging	Finite Element Techniques	Electric and Fuel cell Vehicles	Renewable Sources of Energy	Motorsport Technology

	VERTICAL 1: ADVANCED VEHICLE TECHNOLOGY										
S. No.	Course Code		Course	Periods / Week		Credits	Category				
			Type [#]	L-T-P	TCP*		e alle ger y				
1	AU23C03	Special Purpose Vehicles	Т	3-0-0	3	3	PEC				
2	AU23001	Two and Three-Wheeler Technology	Т	3-0-0	3	3	PEC				
3	AU23002	Road Vehicle Aerodynamics	Т	3-0-0	3	3	PEC				
4	AU23003	Vehicle Control Systems	Т	3-0-0	3	3	PEC				
5	AU23004	Advance Automotive Materials	Т	3-0-0	3	3	PEC				
6	AU23005	Automotive Safety	Т	3-0-0	3	3	PEC				

		VERTICAL 2: ADVANCED EN		ECHNO	LOG	(
S.	Course	Course Name	Course	Perio We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1	AU23006	Engine Management Systems	Т	3-0-0	3	3	PEC
2	AU23007	Alternative and Advanced Fuels for IC engines.	Т	3-0-0	3	3	PEC
3	AU23008	Advanced Theory of IC Engines	Т	3-0-0	3	3	PEC
4	AU23009	Combustion Thermodynamics and Heat Transfer	Т	3-0-0	3	3	PEC
5	AU23010	Engine Computational Fluid Dynamics	Т	3-0-0	3	3	PEC
6	AU23011	Supercharging and scavenging	Т	3-0-0	3	3	PEC

		VERTICAL 3: VEHI	CLE DES	SIGN			
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1	AU23012	Vehicle Design data Characteristics	Т	3-0-0	3	3	PEC
2	AU23013	Geometric Dimension and tolerances	Т	3-0-0	3	3	PEC
3	AU23014	Metrology and Measurement	Т	3-0-0	3	3	PEC
4	AU23015	New Product Development	Т	3-0-0	3	3	PEC
5	AU23016	Reverse Engineering for automobiles	LIT	2-0-2	3	3	PEC
6	AU23017	Finite Element Techniques	Т	3-0-0	3	3	PEC

		VERTICAL 4: ELECTRIC VE	HICLE TI	ECHNC	LOG	(
S.	Course	Course Name	Course	Perio We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1	AU23018	Batteries and Management system	Т	3-0-0	3	3	PEC
2	AU23019	Traction Motors	Т	3-0-0	3	3	PEC
3	AU23020	Power Electronics for Electric Vehicle Application	Т	3-0-0	3	3	PEC
4	AU23021	Autonomous and Connected Vehicles	Т	3-0-0	3	3	PEC
5	AU23022	Artificial Intelligence for Vehicles	Т	3-0-0	3	3	PEC
6	AU23023	Electric and Fuel cell Vehicles	Т	3-0-0	3	3	PEC

		VERTICAL 5: ADVANCE	TECHN	OLOGI	ES		
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		0,
1	AU23024	Nanoscience Technology	Т	3-0-0	3	3	PEC
2	AU23025	Manufacturing of Automotive Components	Т	3-0-0	3	3	PEC
3	AU23026	IoT for Electric Vehicles	Т	3-0-0	3	3	PEC
4	AU23027	Homologation and Certification	Т	3-0-0	3	3	PEC
5	MF23C01	Additive Manufacturing	Т	3-0-0	3	3	PEC
6	AU23028	Renewable Sources of Energy	Т	3-0-0	3	3	PEC

		VERTICAL 6: DIVERSIFIE	D TECHI	NOLOG	SIES		
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		
1	AU23029	Principles of Control Systems	Т	3-0-0	3	3	PEC
2	AU23030	Noise, Vibration and Harshness for Automobiles	Т	3-0-0	3	3	PEC
3	AU23031	Vehicle air Conditioning	Т	3-0-0	3	3	PEC
4	AU23032	Hydraulic and Pneumatic Systems	Т	3-0-0	3	3	PEC
5	AU23033	Transport Management	Т	3-0-0	3	3	PEC
6	AU23034	Motorsport Technology	Т	3-0-0	3	3	PEC

		HONOURS DEGREE	COURS	ES			
S.	Course	Course Name	Course	Peric We		Credits	Category
No.	Code		Type [#]	L-T-P	TCP*		0,
1	AU23035	Automotive Instrumentation and Testing	Т	3-0-0	3	3	SDC
2	AU23036	Cost Management of Engineering Projects	Т	3-0-0	3	3	SDC
3	AU23037	Entrepreneurship Development	Т	3-0-0	3	3	SDC
4	AU23038	Ergonomics in Automotive Design	Т	3-0-0	3	3	SDC
5	AU23039	Industrial Safety	Т	3-0-0	3	3	SDC
6	AU23040	Introduction to Operations Research	Т	3-0-0	3	3	SDC
7	AU23041	Total Quality Management	Т	3-0-0	3	3	SDC
8	AU23042	Waste to Energy	Т	3-0-0	3	3	SDC

	MINOR DEGREE COURSES IN AUTOMOTIVE TECHNOLOGY											
S.	Course	Course Name	Course	Peric We		Credits	Category					
No.	Code		Type [#]	L-T-P	TCP*		0,					
1	AU23043	Introduction to Automobile Engineering	Т	3-0-0	3	3	SDC					
2	AU23044	Basics of Automotive Engines	Т	3-0-0	3	3	SDC					
3	AU23045	Vehicle Chassis	Т	3-0-0	3	3	SDC					
4	AU23046	Vehicle Driveline Systems	Т	3-0-0	3	3	SDC					
5	AU23047	Fundamentals of Vehicle Bodywork	Т	3-0-0	3	3	SDC					
6	AU23048	Introduction to Electric and Hybrid Vehicles	Т	3-0-0	3	3	SDC					

	EMERGING TECHNOLOGY COURSES												
S.	Course	Course Name	Course	Perio We			Category						
No.	Code		Type [#]	L-T-P	TCP*								
1	AU23E01	Fundamentals of Data Science	Т	3-0-0	3	3	ETC						
2	AU23E02	Fundamentals of Deep Learning	Т	3-0-0	3	3	ETC						
3	AU23E03	Introduction to Artificial Intelligence	Т	3-0-0	3	3	ETC						
4	AU23E04	Introduction to Machine Learning	Т	3-0-0	3	3	ETC						

	OPEN ELECTIVE COURSES (OEC) (TO BE OFFERED TO OTHER DEPARTMENT)												
S.	Course	Course Name	Course	Peric We		Credits	Category						
No. Code			Type [#]	L-T-P	TCP*								
1	AU23901	Vehicle Technology	Т	3-0-0	3	3	OEC						
2	AU23902	Automotive Powertrain System	Т	3-0-0	3	3	OEC						
3	AU23903	Vehicle Safety Systems	Т	3-0-0	3	3	OEC						
4	AU23904	Two–Wheeler Technology	Т	3-0-0	3	3	OEC						

EN23C01

FOUNDATION ENGLISH

COURSE OBJECTIVES:

- To develop students' foundational skills in reading, writing, grammar and vocabulary to enable them to understand and produce various forms of communication.
- To enhance students' proficiency in reading comprehension, narrative and comparative writing.
- To comprehend and analyse descriptive texts and visual images
- To articulate similarities and differences in oral and written forms.
- To improve students' proficiency in reading and writing formal letters and emails.

UNIT I BASICS OF COMMUNICATION

Reading - Telephone message, bio-note; Writing – Personal profile; Grammar – Simple present tense, Present continuous tense, wh-questions, indirect questions; Vocabulary – Word formation (Prefix and Suffix).

LAB ACTIVITY:

Listening – Telephone conversation; Speaking Self-introduction; Telephone conversation – Video conferencing etiquette

UNIT II NARRATION

Reading – Comprehension strategies - Newspaper Report, An excerpt from an autobiography; Writing – Narrative Paragraph writing (Event, personal experience etc.); Grammar – Subjectverb agreement, Simple past, Past continuous Tenses; Vocabulary – One-word substitution

LAB ACTIVITY:

Listening – Travel podcast; Speaking – Narrating and sharing personal experiences through a podcast

UNIT III DESCRIPTION

Reading – A tourist brochure, Travel blogs, descriptive article/excerpt from literature, visual images; Writing –Descriptive Paragraph writing, Grammar – Future tense, Perfect tenses, Preposition; Vocabulary – Descriptive vocabulary

LAB ACTIVITY:

Listening – Railway / Airport Announcements, Travel Vlogs; Speaking – Describing a place or picture description

UNIT IV COMPARE AND CONTRAST

Reading – Reading and comparing different product specifications - Writing – Compare and Contrast Essay, Coherence and cohesion; Grammar – Degrees of Comparison; Vocabulary – Transition words (relevant to compare and contrast)

6

6

6

6

6

6

6

LAB ACTIVITY:

Listening – Product reviews, Speaking – Product comparison based on product reviews - similarities and differences

UNIT V EXPRESSION OF VIEWS

Reading – Formal letters, Letters to Editor ; Writing – Letter writing/ Email writing (Enquiry / Permission, Letter to Editor); Grammar – Compound nouns, Vocabulary – Synonyms, Antonyms

LAB ACTIVITY:

Listening – Short speeches; Speaking – Making short presentations (JAM)

TOTAL: 60 PERIODS

TEACHING METHODOLOGY

Interactive lectures, role plays, group discussions, listening and speaking labs, technology enabled language teaching, flipped classroom.

EVALUATION PATTERN

Internal Assessment Written assessments Assignment

Lab assessment Listening Speaking

External Assessment End Semester Examination

LEARNING OUTCOMES

By the end of the courses, students will be able to

- Use appropriate grammar and vocabulary to read different types of text and converse appropriately.
- Write coherent and engaging descriptive and comparative essay writing.
- Comprehend and interpret different kinds of texts and audio visual materials
- Critically evaluate reviews and articulate similarities and differences
- Write formal letters and emails using appropriate language structure and format

TEXT BOOKS:

1. "English for Engineers and Technologists" Volume I by Orient Blackswan, 2022

2. "English for Science & Technology - I" by Cambridge University Press, 2023 **REFERENCES**

- 1. "Interchange" by Jack C.Richards, Fifth Edition, Cambridge University Press, 2017.
- 2. "English for Academic Correspondence and Socializing" by Adrian Wallwork, Springer, 2011.
- 3. "The Study Skills Handbook" by Stella Cortrell, Red Globe Press, 2019
- 4. www.uefap.com

6

6

6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												\checkmark
CO2										\checkmark		
CO3										\checkmark		
CO4										\checkmark		
CO5										\checkmark		\checkmark

MA23C01

MATRICES AND CALCULUS

OBJECTIVES:

- To develop the use of matrix algebra techniques in solving practical problems.
- To familiarize the student with functions of several variables.
- To solve integrals by using Beta and Gamma functions.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals.
- To acquaint the students with the concepts of vector calculus which naturally arise in many engineering problems.

UNIT I MATRICES

Eigenvalues and Eigenvectors of a real matrix – Properties of Eigenvalues and Eigenvectors-Cayley-Hamilton theorem (excluding proof) - Diagonalization of matrices - Reduction of Quadratic form to canonical form by using orthogonal transformation - Nature of a Quadratic form.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

Limit, continuity, partial derivatives – Homogeneous functions and Euler's theorem - Total derivative - Differentiation of implicit functions - Jacobians - Taylor's formula for two variables - Errors and approximations - Maxima and Minima of functions of two variables - Lagrange's method of undermined multipliers.

UNIT III **INTEGRAL CALCULUS**

Improper integrals of the first and second kind and their convergence - Differentiation under integrals - Evaluation of integrals involving a parameter by Leibnitz rule – Beta and Gamma functions-Properties – Evaluation of single integrals by using Beta and Gamma functions.

UNIT IV **MULTIPLE INTEGRALS**

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of Solids – Change of variables in double and triple integrals-

Evaluation of double and triple integrals by using Beta and Gamma functions.

UNIT V **VECTOR CALCULUS**

Gradient of a scalar field, directional derivative - Divergence and Curl - Solenoidal and Irrotational vector fields - Line integrals over a plane curve - Surface integrals – Area of a curved surface - Volume Integral - Green's theorem, Stoke's and Gauss divergence theorems (without proofs)- Verification and applications in evaluating line, surface and volume integrals.

TOTAL: 60 PERIODS

Laboratory based exercises / assignments / assessments will be given to students wherever applicable from the content of the course.

9+3

9+3

9+3

9+3

9+3

General engineering applications / branch specific applications from the content of each units wherever possible will be introduced to students.

Suggested Laboratory based exercises / assignments / assessments : Matrices

- 1. Finding eigenvalues and eigenvectors
- 2. Verification of Cayley-Hamilton theorem
- 3. Eigenvalues and Eigenvectors of similar matrices
- 4. Eigenvalues and Eigenvectors of a symmetric matrix
- 5. Finding the powers of a matrix
- 6. Quadratic forms

Functions of Several Variables

- 1. Plotting of curves and surfaces
- 2. Symbolic computation of partial and total derivatives of functions
- Integral Calculus
 - 1. Evaluation of beta and gamma functions
 - 2. Computation of error function and its complement
- Multiple Integrals
 - 1. Plotting of 3D surfaces in Cartesian and Polar forms
- Vector Calculus
 - 1. Computation of Directional derivatives
 - 2. Computation of normal and tangent to the given surface

OUTCOMES:

- CO 1 :Use the matrix algebra methods for solving practical problems.
- CO 2 :Use differential calculus ideas on several variable functions.
- CO 3 :Apply different methods of integration in solving practical problems by using Beta and Gamma functions.
- CO 4 : Apply multiple integral ideas in solving areas and volumes problems.
- CO 5 : Apply the concept of vectors in solving practical problems.

TEXT BOOKS:

- 1. Joel Hass, Christopher Heil, Maurice D.Weir "'Thomas' Calculus", Pearson Education., New Delhi, 2018.
- 2. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, 45th Edition, New Delhi, 2020.
- 3. James Stewart, Daniel K Clegg & Saleem Watson "Calculus with Early Transcendental Functions", Cengage Learning, 6th Edition, New Delhi,2023.

REFERENCES:

Course

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India Pvt Ltd., New Delhi, 2018.
- 2. Greenberg M.D., "Advanced Engineering Mathematics", Pearson Education2nd Edition, 5th Reprint, Delhi, 2009.
- 3. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, 5th Edition, New Delhi, 2017.
- 4. Narayanan S. and Manicavachagom Pillai T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, 7 th Edition, New Delhi , 2012.
- 6. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., 11th Reprint, New Delhi, 2010.

CO – PO Mapping:

PROGRAMME OUTCOMES

Outcomes	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	
CO1 :	3	3	2	3	1	2	1	1	1	1	1	3	
CO2 :	3	3	2	3	1	2	1	1	1	1	1	3	
CO3 :	3	3	2	3	1	2	1	1	1	1	1	3	
CO4 :	3	3	2	3	1	2	1	1	1	1	1	3	
CO5 :	3	3	2	3	1	2	1	1	1	1	1	3	

PH23C01

ENGINEERING PHYSICS

LTPC

(Common to all branches of B.E/B.Tech Programmes) 3 0 2 4

COURSE OBJECTIVES

- To familiarize with crystal structure, bonding and crystal growth.
- To impart knowledge on Mechanics of Materials.
- To impart knowledge of oscillations, sound and Thermal Physics
- To facilitate understanding of optics and its applications, different types of Lasers and fiber optics.
- To introduce the basics of Quantum Mechanics and its importance.

UNIT I CRYSTAL PHYSICS

Crystal Bonding – Ionic – covalent – metallic and van der Walls's/ molecular bonding. Crystal systems - unit cell, Bravais lattices, Miller indices - Crystal structures - atomic packing density of BCC, FCC and HCP structures. NaCl, Diamond, Graphite, Graphene, Zincblende and Wurtzite structures - crystal imperfections- point defects - edge and screw dislocations – grain boundaries. Crystal Growth – Czocharalski method – vapor phase epitaxy – Molecular beam epitaxy-Introduction to X-Ray Diffractometer.

- 1. Determination of Lattice parameters for crystal systems.
- 2. Crystal Growth Slow Evaporation method
- 3. Crystal Growth Sol Gel Method

UNIT II MECHANICS OF MATERIALS

Rigid Body – Centre of mass – Rotational Energy - Moment of inertia (M.I)- Moment of Inertia for uniform objects with various geometrical shapes. Elasticity –Hooke's law - Poisson's ratio - stress-strain diagram for ductile and brittle materials – uses- Bending of beams – Cantilever - Simply supported beams - uniform and non-uniform bending - Young's modulus determination - I shaped girders –Twisting couple – Shafts. Viscosity – Viscous drag – Surface Tension.

- 1. Non-uniform bending -Determination of Young's modulus of the material of the beam.
- 2. Uniform bending -Determination of Young's modulus of the material of the beam
- 3. Viscosity Determination of Viscosity of liquids.

UNIT III OSCILLATIONS, SOUND AND THERMAL PHYSICS

Simple harmonic motion - Torsional pendulum -- Damped oscillations -Shock Absorber -Forced oscillations and Resonance -Applications of resonance.- Waves and Energy Transport -Sound waves - Intensity level - Standing Waves - Doppler effect and its applications - Speed of blood flow. Ultrasound - applications - Echolocation and Medical Imaging. Thermal Expansion - Expansion joints - Bimetallic strip - Seebeck effect - thermocouple -Heat Transfer Rate - Conduction - Convection and Radiation.

- 1. Torsional pendulum-Determination of rigidity modulus of wire and moment of inertia of the disc
- 2. Melde's string experiment Standing waves.
- 3. Ultrasonic interferometer determination of sound velocity and liquids compressibility

9+6

9+6

9+6

UNIT IV **OPTICS AND LASERS**

Interference - Thin film interference - Air wedge- Applications -Interferometers-Michelson Interferometer -- Diffraction - CD as diffraction grating - Diffraction by crystals -Polarization polarizers -- Laser -- characteristics -- Spontaneous and Stimulated emission- population -inversion - Metastable states - optical feedback - Nd-YAG laser, CO₂ laser, Semiconductor laser - Industrial and medical applications - Optical Fibers - Total internal reflection - Numerical aperture and acceptance angle - Fiber optic communication - Fiber sensors - Fiber lasers.

- 1. Laser - Determination of the width of the groove of the compact disc using laser. Laser Parameters Determination of the wavelength of the laser using grating
 - -Determination of the thickness of a thin sheet/wire
- 2. Air wedge
- 3. Optical fibre - Determination of Numerical Aperture and acceptance angle -Determination of bending loss of fibre.
- 4. Michelson Interferometer (Demonstration)

UNIT V QUANTUM MECHANICS

Black body radiation (Qualitative) - Planck's hypothesis - Einstein's theory of Radiation - Matter waves-de Broglie hypothesis - Electron microscope - Uncertainty Principle - The Schrodinger Wave equation (time-independent and time-dependent) - Meaning and Physical significance of wave function - Normalization - Particle in an infinite potential well-particle in a three-dimensional box -Degenerate energy states - Barrier penetration and quantum tunneling - Tunneling microscope.

- Photoelectric effect Determination of Planck's constant. 1.
 - 2. Black Body Radiation (Demonstration)
 - 3. Electron Microscope (Demonstration)

TOTAL: 75 PERIODS

COURSE OUTCOMES:

After completion of the course, the students will be able to

- **CO1:** Understand the significance of crystal structure and bonding. Learn to grow crystals.
- CO2: Obtain knowledge on important mechanical and thermal properties of materials and determine them through experiments.
- **CO3:** Conceptualize and visualize the oscillations and sound.
- **CO4:** Grasp optical phenomenon and their applications in real life.
- **CO5:** Appreciate and evaluate the quantum phenomenon.
- **CO6** Develop skill set to solve engineering problems and design experiments.

TEXT BOOKS:

- 1. Raymond A. Serway, John W. Jewett, Physics for Scientists and Engineers, Thomson Brooks/Cole, 2013.
- 2. D. Halliday, R. Resnick and J. Walker, Principles of Physics. John Wiley & Sons, 10th Edition, 2015.
- 3. N. Garcia, A. Damask and S. Schwarz, Physics for Computer Science Students, Springer-Verlag, 2012.
- 4. Alan Giambattista, Betty McCarthy Richardson and Robert C. Richardson, College Physics, McGraw-Hill Higher Education, 2012.

REFERENCES:

- 1. R. Wolfson, Essential University Physics. Volume 1 & 2. Pearson, 2016.
- 2. D. Kleppner and R. Kolenkow. An Introduction to Mechanics, McGraw Hill Education, 2017.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1		1							
CO2	3	2	1	1								
CO3	3	2	1	1								
CO4	3	2	1	1	1							
CO5	3	2	1	1	1							
CO6	3	2	1	2								

ME23C01

ENGINEERING DRAWING AND

3D MODELING

LTPC

2 0 4 4

INTRODUCTION

Manual drawing tools (Mini Drafter, Set Squares, Protractor, Compass, and different grades of pencil). 'BIS' specifications and rules of Engineering Drawing – Arrows (2H thin line body, HB Filled head and L:W = 3:1 ratio), lettering (Digital fonts, font sizes pertaining to usage and representation), types of line and their syntax (Drawing based – Continuous thin & thick, dashed, dashed dotted and Application based – extension, dimensioning, construction, projection, reference, axis, section, hatching, and break lines), scaling (up, down and equal), and dimensioning. Placing and positioning the 'A3' size drawing sheet over the drawing table. Principal planes and projection, Division of line and circle in to equal parts, and construction of polygons

UNIT 1: ENGINEERING CURVES, PROJECTION OF POINTS AND LINES

Construction of conic curves with their tangent and normal – ellipse, parabola, and hyperbola by eccentricity method

Construction of special curves with their tangent and normal – cycloid, epicycloid, and involute

Projection of points and I angle projection of lines inclined to both principal planes by rotating line method and trapezoidal rule – marking their traces.

Lab exercises: Study exercise – Introduction to Sketching (or) Drawing, and modification tools in CAD software (AutoCAD, CREO, CATIA, Solid Works, Inventor, Fusion 360)

(6+12 = 18 Hours)

Activities based learning: Identification of the curves used in the application given in the flash card, demonstration of the instantaneous centre of rotation of governors with respect to angle of inclination of the arms of the governors

UNIT 2: PROJECTION OF SURFACES & SOLIDS, AND 2D MODELING

Projection of surfaces inclined to both the principal planes – polygonal, trapezoidal, rhomboidal and circular

Projection of solids – prisms, pyramids, and axisymmetric solids when the axis inclined to both the principal planes – freely hanging – contour resting condition on either of the planes by rotating object method

Lab exercises: Construction of basic sketches – lines, circle, polygon, spline curves, coils, along with dimensioning. Familiarizing with geometric constraints and their types

(6+12 = 18 Hours)

Activities based learning: Making the solids using cardboards, shadow mapping and contour drawing at different orientation of the solids using torches

UNIT 3: 3D PROJECTION OF SOLIDS AND 3D MODELING OF SIMPLE PARTS

Free hand sketching - I & III angle projections of engineering parts and components

Isometric projection of combination of solids – prisms, pyramids, axisymmetric solids, frustum

Perspective projection of prisms, pyramids and axisymmetric solids by visual ray method

Lab exercises: 3D Modeling and 2D drafting of machine parts

(6+12 = 18 Hours)

Activities based learning: Flipped classroom for Free hand sketching, Jig saw activity for Isometric projection, arts and crafts for perspective view

UNIT 4: SECTION OF SOLIDS AND SECTIONED DRAFTING OF ASSEMBLED COMPONENTS

Section of simple and hollow solids – prisms, pyramids and axisymmetric solids, solids with holes/ slots when the section plane perpendicular to one principal plane and inclined to other principal plane ('On the axis' and 'from the axis' conditions)

Application based – section of beams (I, T, L, and C), section of pipe bracket, wood joints, composite walls, shells, flange of a coupling and other similar applications

Lab exercises: Assembly of parts with respect to engineering constraints, and sectioned drafting of assembled components

(6+12 = 18 Hours)

Activities based learning: Making of mitered joint in wood, sectioning the beams in different angles of orientation and identifying the true shape

UNIT 5: LATERAL SURFACE DEVELOPMENT AND SHEET METAL DESIGN

Lateral surface development of sectioned solids when the section plane perpendicular to VP and inclined to HP.

Application based – construction of funnel, chimney, dish antenna, door latch, trays, AC vents, lamp shade, commercial packaging boxes with respect to sectioning conditions and other similar applications

Lab exercises: Sheet metal design and drafting, drafting of coils, springs and screw threads

(6+12 = 18 Hours)

Activities based learning: Fabrication of funnels, chimney, lamp shade, boxes using card boards, ply woods, acrylics

Total: 90 Hours

Note: Activities based learning should not be covered in the regular class hours. It should be given as assignments to the group of maximum 3 members

COURSE OBJECTIVES

After successful completion of this course, the students will be able to:

- 1. Understand and use the engineering curves in engineering applications and projection techniques to construct conic curves, points and lines.
- 2. Develop skills in projecting surfaces and solids and create 2D models using CAD software.
- 3. Develop skills in 3D projection and 3D modeling of simple parts manually as well as using CAD software.
- 4. Understand and apply sectioning techniques to solids and assemble components.
- 5. Develop skills in lateral surface development and sheet metal design.

COURSE OUTCOMES

After successful completion of the course, the students will be able to:

CO1: Construct and identify different types of conic curves and special curves, and project the points and lines pertaining to engineering applications

CO2: Project and visualize surfaces and solids in different orientations and utilize the CAD tools for designing.

CO3: Create and draft accurate 3D models and 2D drawings of machine parts manually as well as using CAD software

CO4: Determine the true shape of a sectioned solid and draft the assembled parts accordingly

CO5: Develop lateral surfaces of sectioned solids and design sheet metal components

Text book

- "Engineering Drawing" by N S Parthasarathy and Vela Murali, Oxford University Press; UK ed. Edition, 2015.
- "Engineering Drawing + Auto CAD" by Venugopal K, V. Prabhu Raja, New Age International Publishers, Sixth edition (1 January 2022).

References

- "Basic Engineering Drawing: Mechanical Semester Pattern" by Mehta and Gupta, Charotar Publishing House, 2nd edition, 2018.
- "Engineering Drawing" by Basant Agrawal and C M Agrawal, Vikas Publishing House, 3rd edition, 2020.
- "Engineering Drawing With Auto CAD" by B V R Gupta, McGraw Hill Education, 4th edition, 2019.
- 4. "Engineering Drawing" by P S Gill, Tata McGraw Hill Education, 5th edition, 2018.
- 5. "Engineering Drawing with an Introduction to AutoCAD" by Dhananjay Jolhe, Cengage Learning, 2nd edition, 2020.
- 6. "Engineering Drawing" by M B Shah, Charotar Publishing House, 3rd edition, 2019
- "Fundamentals of Engineering Drawing" by Imtiaz Hashmi, Pearson Education, 2nd edition, 2018.
- "Computer Aided Engineering Drawing" by S Trymbaka Murthy, Scitech Publications, 3rd edition, 2020.
- "CAED: Computer Aided Engineering Drawing for I/II Semester BE/Btech Courses" by Reddy K B, CBS Publishers & Distributors, 2nd, 2019.
- "Computer-Aided Engineering Drawing" by Subrata Pal, Oxford University Press, 2nd, 2020.

СО	PO												PSO			
00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	3	2		1				3	1		3	3	3	2	
2	3	3	2		2				3	2		3	3	3	2	
3	3	3	3	1	2				3	3		3	3	3	2	
4	3	3	3	1	3				3	3		3	3	3	2	
5	3	3	3	1	3				3	3		3	3	3	2	

EE23C03BASICS OF ELECTRICAL AND ELECTRONICSL T P CENGINEERING2 0 2 3

UNIT-IBASIC ELECTRICAL CIRCUITS6Basic Elements: R,L,C- DC Circuits: Ohm's Law - Kirchhoff's Laws –Mesh and Nodal
Analysis(Only Independent Sources). AC Circuits: Average Value, RMS Value, Impedance

Analysis(Only Independent Sources). AC Circuits: Average Value, RMS Value, Impedance Instantaneous Power, Real Power, Reactive Power and Apparent Power, Power Factor-Steady state Analysis of RL,RC and RLC circuits.

UNIT II AC AND DC MACHINES 6

Magnetic Circuit Fundamentals -DC Machines - Construction and Working Principle, Types and Application of DC generator and Motor, EMF and Torque Equation.

AC Machines: Principle, Construction, Working and Applications of Transformer -Three phase Alternator - Three Phase Induction Motor.

UNIT III ANALOG AND DIGITAL ELECTRONICS 6

Operation and Characteristics of electronic devices: PN Junction Diodes, Zener Diode and BJT Applications: Diode Bridge Rectifier and Shunt Regulator.

Introduction to Digital Electronics: Basics Logic Gates-Flip Flops.

UNIT IV SENSORS AND TRANSDUCERS 6

Solenoids, electro-pneumatic systems, proximity sensors, limit switches, Strain gauge, LVDT, Piezo electric transducer, optical and digital transducers, Smart sensors, Thermal Imagers.

UNIT V MEASUREMENTS AND INSTRUMENTATION 6

Functional Elements of an Instrument, Operating Principle of Moving Coil and Moving Iron Instruments, Power Measurement, Energy Meter, Instrument Transformers - CT and PT, Multimeter- DSO - Block Diagram Approach.

LAB COMPONENET:

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Load test on Single Phase Transformer.
- 4. Load test on 3 Phase Induction Motor.
- 5. Uncontrolled diode bridge Rectifiers.
- 6. Application of Zener diode as shunt regulator.
- 7. Verification of truth table of logic gates and flip flops.
- 8. Characteristics of LVDT.
- 9. Three phase power measurement using two wattmeter method.
- 10. Study of DSO.

COURSE OUTCOMES:

Students will be able to

- **CO1** Compute the electric circuit parameters for simple circuits.
- **CO2** Understand the working principles and characteristics of electrical machines.
- **CO3** Understand the basic electronic devices.

6

TOTAL:30 PERIODS

- **CO4** Understand the basic operating principles of sensors and transducer.
- **CO5** Understand the operating principles measuring devices

TEXT BOOKS:

- 1. Kotharai DP and Nagarath IJ, "Basic Electrical and Electronics Enigneering", McGraw Hill Education, Second Edition, 2020.
- 2. Bhattacharya SK, "Basic Electrical and Electronics Engineering", Pearson Education, Second Edition, 2017.

REFERENCES:

- 1. Mehta V.K. & Mehta Rohit, "Principles of Electrical Engineering and Electronics", McGraw Hill Education, Second Edition, 2020.
- 2. Mehta V.K. & Mehta Rohit, "Principles of Electrical Machines", S. Chand Publishing, second edition 2006.
- 3. Albert Malvino & David Bates, "Electronic principles", McGraw Hill Education, Seventh Edition, 2017.

Мар	Mapping COs and POs:																
	Pos												PSOs				
CO	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	PO	PO	PO	PS	PS	PS	PS	
	0	0	0	0	0	0	0	0	0	10	11	12	01	02	03	04	
	1	2	3	4	5	6	7	8	9								
CO	2	1															
CO	2	1															
CO:	2	1															
CO4	2	1															
CO	2	1															
Avg	2	1															

ME23C04

MAKERSPACE

L T P C 1 0 4 3

COURSE OBJECTIVES:

- 1. To practice the usage of various tools towards assembly and dis-assembly of different items / equipment.
- 2. To make simple part / component using welding processes.
- 3. To train on the basic wiring practices of boards, machines, etc.
- 4. To provide a hands-on experience on the use of electronic components, equipment, sensors and actuators.
- 5. To expose to modern computer tools and advanced manufacturing / fabrication processes.

LIST OF ACTIVITIES

1L,4P

(A). Dis-assembly & Assembly Practices

- i. Tools and its handling techniques.
- Dis-assembly and assembly of home appliances Grinder Mixer Grinder, Ceiling Fan, Table Fan & Washing Machine.
- iii. Dis-assembly and assembly of Air-Conditioners & Refrigerators.
- iv. Dis-assembly and assembly of a Bicycle.

(B). Welding Practices

- i. Welding Procedure, Selection & Safety Measures.
- Power source of Arc Welding Gas Metal Arc Welding & Gas Tungsten Arc Welding processes.
- iii. Hands-on session of preparing base material & Joint groove for welding.
- iv. Hands-on session of MAW, GMAW, GTAW, on Carbon Steel & Stainless Stell plates / pipes, for fabrication of a simple part.

(C). Electrical Wiring Practices

- i. Electrical Installation tools, equipment & safety measures.
- ii. Hands-on session of basic electrical connections for Fuses, Miniature Circuit Breakers and Distribution Box,
- iii. Hands-on session of electrical connections for Lightings, Fans, Calling Bells.
- iv. Hands-on session of electrical connections for Motors & Uninterruptible Power Supply.

(D). Electronics Components / Equipment Practices

- i. Electronic components, equipment & safety measures.
- ii. Dis-assembly and assembly of Computers.
- iii. Hands-on session of Soldering Practices in a Printed Circuit Breaker.
- iv. Hands-on session of Bridge Rectifier, Op-Amp and Transimpedance amplifier.
- v. Hands-on session of integration of sensors and actuators with a Microcontroller.
- vi. Demonstration of Programmable Logic Control Circuit.

(E). Contemporary Systems

- i. Demonstration of Solid Modelling of components.
- ii. Demonstration of Assembly Modelling of components.
- iii. Fabrication of simple components / parts using 3D Printers.
- iv. Demonstration of cutting of wood / metal in different complex shapes using Laser Cutting Machine.

TOTAL: 75 Periods (15 Lecture + 60 Practical)

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

- CO1: Assemble and dis-assemble various items / equipment.
- CO2: Make simple parts using suitable welding processes.
- CO3: Setup wiring of distribution boards, machines, etc.
- CO4: Utilise the electronic components to fabricate a simple equipment, aided with sensors and actuators.
- CO5: Take advantage of modern manufacturing practices.

REFERENCES:

- 1. Stephen Christena, Learn to Weld: Beginning MIG Welding and Metal Fabrication Basics, Crestline Books, 2014.
- 2. H. Lipson, Fabricated The New World of 3D Printing, Wiley, 1st edition, 2013.
- 3. Code of Practice for Electrical Wiring Installations (IS 732:2019)
- 4. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Oxford University Press, 7th ed. (Indian edition), 2017.
- 5. Mazidi, Naimi, Naimi, AVR Microcontroller and Embedded Systems: Using Assembly and C, Pearson India, 1st edition 2013.
- 6. Visualization, Modeling, and Graphics for Engineering Design, D.K. Lieu, S.A. Sorby, Cengage Learning; 2nd edition.

L T P C 1 0 0 1

அலகு I <u>டொழி மற்றும் இலக்கியம்</u>:

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை: 3

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

அலகு IV <u>தமிழர்களின் திணைக் கோட்பாடுகள்</u>:

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல்

3

3

3

TOTAL : 15 PERIODS

துறை வெளியீடு)

- 4. பொருநை – ஆற்றங்கரை நாகரிகம். (கொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in 5. print)
- Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: 6. International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published 9. by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) 10. (Publishedby: The Author)
- Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu 11. Text Bookand Educational Services Corporation, Tamil Nadu)
- Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) -12. Reference Book.

HERITAGE OF TAMILS

UNIT I LANGUAGE AND LITERATURE

UC23H01

Language Families in India - Dravidian Languages - Tamil as a Classical Language -Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Navanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND UNIT V **INDIAN CULTURE**

3 Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

3

3

LTPC 1 0 0 1

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

NCC Credit Course Level 1*

UC23P01	(ARMY WING) NCC Credit Course Level - I	_	-	Р 0	-
NCC GE	NERAL			6	
NCC 1	Aims, Objectives & Organization of NCC			1	
NCC 2	Incentives			2	
NCC 3	Duties of NCC Cadet			1	
NCC 4	NCC Camps: Types & Conduct			2	
NATION	AL INTEGRATION AND AWARENESS			4	
NI 1	National Integration: Importance & Necessity			1	
NI 2	Factors Affecting National Integration			1	
NI 3	Unity in Diversity & Role of NCC in Nation Building			1	
NI 4	Threats to National Security			1	
PERSON	IALITY DEVELOPMENT			7	
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Ma	akir	ng	ano	d
	Problem Solving			2	
PD 2	Communication Skills			3	
PD 3	Group Discussion: Stress & Emotions			2	
	SHIP ership Capsule: Traits, Indicators, Motivation, Moral Values, Honour 'C se Studies: Shivaji, Jhasi Ki Rani	od	е	5 3 2	
SOCIAL SS 1 SS 4 SS 5 SS 6 SS 7	SERVICE AND COMMUNITY DEVELOPMENT Basics, Rural Development Programmes, NGOs, Contribution of Yo Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives Cyber and Mobile Security Awareness	uth	1	8 3 1 2 1	

TOTAL: 30 PERIODS

	NCC Credit Course Level 1*				
UC23P02	(NAVAL WING) NCC Credit Course Level – I	L	т	Ρ	С
	· ·	2	0	0	2
NCC GEN	ERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3	Duties of NCC Cadet				1
NCC 4	NCC Camps: Types & Conduct				2
NATIONA	L INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
PERSONA	ALITY DEVELOPMENT				7
	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Mal Problem Solving	kin	g a	nd 2	
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADERS	SHIP				5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Ho	onc	our	Сс	de
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL S	ERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Yo	uth	۱		3
SS 4	Protection of Children and Women Safety				1
SS 5	Road / Rail Travel Safety				1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL : 30 PERIODS

UC23P03		T P C 0 0 2
NCC GEN NCC 1 NCC 2 NCC 3 NCC 4	Aims, Objectives & Organization of NCC Incentives Duties of NCC Cadet	6 1 2 1 2
NATIONA NI 1 NI 2 NI 3 NI 4	L INTEGRATION AND AWARENESS National Integration: Importance & Necessity Factors Affecting National Integration Unity in Diversity & Role of NCC in Nation Building Threats to National Security	4 1 1 1 1
PERSONA PD 2 PD 3	LITY DEVELOPMENT PD 1Self-Awareness, Empathy, Critical & Creative Thinking, Decision and Problem Solving Communication Skills Group Discussion: Stress & Emotions	7 Making 2 3 2
LEADERS L 1 Leader L 2	HIP ship Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code Case Studies: Shivaji, Jhasi Ki Rani	5 3 2
SOCIAL S SS 1 SS 4 SS 5 SS 6	ERVICE AND COMMUNITY DEVELOPMENT Basics, Rural Development Programmes, NGOs, Contribution of Youth Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives SS 7 Cyber and Mobile Security Awareness	8 1 1 2

1

TOTAL: 30 PERIODS

EN23C02

PROFESSIONAL COMMUNICATION

LT P C 2 0 2 3

COURSE OBJECTIVES:

- To read and comprehend different forms of official texts.
- To develop students' writing skills in professional context.
- To actively listen, read and understand written and oral communication in a professional context.
- To comprehend and analyse the visual content in authentic context.
- To write professional documents with clarity and precision

UNIT I CAUSE AND EFFECT

Reading – Newspaper articles on Social and Environmental issues; Writing – Instructions, Cause and effect essay; Grammar - Modal verbs; Vocabulary – Cause and effect, Idioms

LAB ACTIVITY:

Listening and Speaking – Listen to news reports and summarise in oral form.

UNIT II CLASSIFICATION

Reading – An article, social media posts and classifying based on the content; Writing – Definition, Note making, Note taking (Cornell notes etc.) and Summarising; Grammar – Connectives; Vocabulary – Phrasal verbs

LAB ACTIVITY:

Listening and speaking: Social interaction (Conversation including small talk)

UNIT III PROBLEM AND SOLUTION

Reading – Visual content (Tables/charts/graphs) for comprehension; Writing - Problem and Solution Essay; Grammar – If conditionals; Vocabulary – Sequential words.

LAB ACTIVITY:

Listening – Group discussion; Speaking – Participating in a group discussion

UNIT IV REPORT

Reading – Formal report on accidents (industrial/engineering); Writing – Industrial Accident report; Grammar – Active and passive voice, Direct and Indirect speech; Vocabulary – Numerical adjectives.

LAB ACTIVITY:

Listening / watching – Television documentary and discussing its content, purpose etc.

UNIT V JOB APPLICATION AND INTERVIEW

Reading - Job advertisement and company profile; Writing – Job application (cover letter and CV) Grammar – Mixed Tenses; Vocabulary – Collocations related to work environment

LAB ACTIVITY:

Listening – Job interview; Speaking – Mock interviews

TOTAL: 60 PERIODS

6

6

6

6

- 6
- 6

6

6

-

6

6

TEACHING METHODOLOGY

Interactive lectures, role plays, group discussions, listening and speaking labs, technology enabled language teaching, flipped classroom.

EVALUATION PATTERN

Internal Assessment Written assessments Assignment Lab Assessment Group discussion (Peer assessment) Listening External Assessment End Semester Examination

LEARNING OUTCOMES

By the end of the courses, students will be able to

- To apply appropriate language structure and vocabulary to enhance both spoken and written communication in formal contexts.
- Comprehend different forms of official documents
- Write professional documents coherently and cohesively.
- Interpret verbal and graphic content in authentic context
- Analyse and evaluate verbal and audio visual materials.

TEXT BOOKS:

- 1. "English for Engineers and Technologists" Volume 2 by Orient Blackswan, 2022
- 2. "English for Science & Technology II" by Cambridge University Press, 2023.

REFERENCES:

- 1. "Communicative English for Engineers and Professionals" by Bhatnagar Nitin, Pearson India, 2010.
- 2. "Take Off Technical English for Engineering" by David Morgan, Garnet Education, 2008.
- 3. "Advanced Communication Skills" by Mathew Richardson, Charlie Creative Lab, 2020.
- 4. www.uefap.com

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

ORDINARY DIFFERENTIAL EQUATIONS AND TRANSFORM MA23C02 т Ρ С **TECHNIQUES**

1 4 3 0

OBJECTIVES:

- To acquaint the students with Differential Equations which are significantly used in engineering problems.
- To make the students to understand the Laplace transforms techniques.
- To develop the analytic solutions for partial differential equations used in engineering by Fourier series.
- To acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic.
- To develop Z- transform techniques in solving difference equations.

UNIT I **ORDINARY DIFFERENTIAL EQUATIONS**

Homogeneous linear ordinary differential equations of second order -superposition principle general solution- Particular integral - Operator method - Solution by variation of parameters -Method of undetermined coefficients - Homogeneous equations of Euler-Cauchy and Legendre's type – System of simultaneous linear differential equations with constant coefficients.

UNIT II LAPLACE TRANSFORMS

Existence theorem - Transform of standard functions - Transform of Unit step function and Dirac delta function - Basic properties - Shifting theorems - Transforms of derivatives and integrals – Transform of periodic functions - Initial and Final value theorem - Inverse Laplace transforms- Convolution theorem (without proof) - Solving Initial value problems by using Laplace Transform techniques.

UNIT III FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half-range Sine and Cosine series - Complex form of Fourier series - Parseval's identity - Computation of harmonics.

UNIT IV FOURIER TRANSFORMS

Fourier integral theorem – Fourier transform pair - Fourier sine and cosine transforms – Properties - Transform of elementary functions - Inverse Fourier Transforms - Convolution theorem (without proof) – Parsevals's identity.

UNIT V **Z – TRANSFORM AND DIFFERENCE EQUATIONS**

Z-transform – Properties of Z-transform – Inverse Z-transform – Convolution theorem – Evaluation of Inverse Z transform using partial fraction method and convolution theorem - Initial and final value theorems - Formation of difference equations - Solution of difference equations using Z - transform.

TOTAL: 60 PERIODS

Laboratory based exercises / assignments / assessments will be given to students from the content of the course wherever applicable.

Branch specific / General Engineering applications based on the content of each units will be introduced to students wherever possible.

9+3

9+3

9+3

9+3

9+3

OUTCOMES:

CO1 :Solve higher order ordinary differential equations which arise in engineering applications.

CO2 : Apply Laplace transform techniques in solving linear differential equations.

CO3 : Apply Fourier series techniques in engineering applications.

CO4 :Understand the Fourier transforms techniques in solving engineering problems.

CO5 :Understand the Z-transforms techniques in solving difference equations.

Suggested Laboratory based exercises / assignments / assessments :

Ordinary differential equations

1. Symbolic computation of linear ordinary differential equations

2. Solving System of simultaneous linear differential equations using ODE SOLVER Laplace transforms

- 1. Symbolic computation of Laplace transform and Inverse Laplace transform
- 2. Plotting Laplace transforms

Fourier Series

- 1. Symbolic computation of Fourier Coefficients
- 2. Computation of harmonics
- 3. Plotting truncated Fourier Series

Fourier Transform

- 1. Symbolic computation of Fourier Transforms
- 2. Plotting truncated Fourier Transforms
- Z transform
 - 1. Symbolic computation of Z-Transforms

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, 45th Edition, New Delhi, 2020.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India Pvt Ltd., New Delhi, 2018.

REFERENCES:

- 1. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008
- 2. Greenberg M.D., "Advanced Engineering Mathematics", Pearson Education2nd Edition, 5th Reprint, Delhi, 2009.
- 3. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, 5 th Edition, New Delhi, 2017.
- 4. Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, 7 th Edition, New Delhi , 2012.
- 5. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., 11th Reprint, New Delhi, 2010.

CO	_	PO	Ma	pp	oin	a:
~~				rγ		ື.

Course					PROG	RAMME	OUTCO	OMES				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P10	P11	P12
CO 1 :	3	3	2	3	1	2	1	1	1	1	1	3
CO 2 :	3	3	2	3	1	2	1	1	1	1	1	3
CO 3 :	3	3	2	3	1	2	1	1	1	1	1	3
CO 4 :	3	3	2	3	1	2	1	1	1	1	1	3
CO 5 :	3	3	2	3	1	2	1	1	1	1	1	3

PH23C04FUNDAMENTALS OF MATERIALS SCIENCE ANDL T P CENGINEERING3 0 0 3

COURSE OBJECTIVES:

- To make the students to understand the basics of phase diagrams and their applications.
- To introduce various strengthening methods of materials, and also various mechanical properties and their measurement.
- To learn about iron-carbon system, effect of alloying elements and various transformations in the Fe-C system.
- To instill the phase transformations and various heat treatment processes.
- To introduce the advanced materials preparation, properties and applications of ceramics and composites.

UNIT I PHASE DIAGRAMS

Solid solutions - Hume Rothery's rules - The phase rule – Gibbs Free Energy - single component system (iron) - binary phase diagrams - isomorphous systems (Cu-Ni) - determination of phase composition and phase amounts -the tie-line rule - the lever rule - eutectic phase diagram - peritectic phase diagram - other invariant reactions - binary eutectic diagram with no solid solution and limited solid solution (Pb-Sn)– microstructural change during cooling.

UNIT II MECHANICAL PROPERTIES

Tensile test - plastic deformation by slip – slip systems – mechanisms of strengthening in metals: strain hardening, grain size reduction, solid solution strengthening, precipitation hardening – Creep: creep curves, stress and temperature effects, mechanisms of creep, creep-resistant materials – Fracture: ductile and brittle fractures - the Griffith criterion – fracture toughness -Fatigue failure: the S-N curve – factors that affect fatigue life – Hardness: Rockwell and Brinell hardness tests, Knoop and Vicker's microhardness tests.

UNIT III FERROUS ALLOYS AND STEELS

The iron-carbon equilibrium diagram - phases, invariant reactions - microstructure of slowly cooled steels - eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - steels - stainless steels - cast irons - copper alloys – aluminum alloys - titanium alloys - NiTi alloy and its applications

UNIT IV HEAT TREATMENT OF MATERIALS

Phase transformations - T-T-T-diagram for eutectoid steel – pearlitic, bainitic and martensitic transformations - tempering of martensite - precipitation and age hardening, function of alloying elements, heat treatment of steels - annealing - normalizing - quenching and tempering - case hardening - induction- flame and laser hardening - carburizing, cyaniding - carbonitriding and nitriding.

UNIT V ADVANCED MATERIALS

High-temperature materials, Ceramics – types – properties and applications- Composites: classification, role of matrix and reinforcement - Fiber reinforced composites – carbon-carbon

9

9

9

9

9

composites, metallic glasses -types-glass forming ability of alloys, Smart materials -Shape memory alloys properties and applications – Nanocomposites – Carbon based Nanocomposites and Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will

- **CO1:** Gain knowledge of the basics of binary phase diagrams and the use of lever rule
- **CO2:** Understand the significance of dislocations, strengthening mechanisms, and tensile, creep, hardness and fracture behavior of materials
- **CO3:** Learn about the Fe-C phase diagram, the effect of alloying elements, TTT in the Fe-C system, and also the heat treatment of steels.
- CO4: Acquire knowledge on heat treatment of materials and phase transformations
- **CO5:** Get an adequate understanding of the preparation, properties, and applications of ceramics, composites, metallic glasses, and shape-memory alloys

TEXTBOOKS:

- 1. Raghavan, V. "Physical Metallurgy: Principles and Practice", Phi Learning (2009).
- 2. Balasubramaniam, R. "Callister's Materials Science and Engineering", Wiley India Pvt. Ltd. (2014).

REFERENCES:

- 1. Raghavan, V. "Materials Science and Engineering", Prentice Hall of India (2007).
- 2. Shackelford, J.F. "Introduction to Materials Science for Engineers". Pearson India (2006).
- 3. Donald Askeland. "Materials Science and Engineering", Brooks/Cole (2010).
- 4. Smith, W.F., Hashemi, J. and R. Prakashh. "Materials Science and Engineering", Tata McGraw Hill Education Private Limited (2014).

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	1							
CO2	3	2	1	1	1							
CO3	2	2	1	1	1							
CO4	2	2	1	2	1							
CO5	2	2	2	2	1							

UNIT I WATER TECHNOLOGY

Water – sources and impurities – water quality parameters: colour, odour, pH, hardness, alkalinity, TDS, COD, BOD, and heavy metals. Boiler feed water – requirement – troubles (scale & sludge, caustic embrittlement, boiler corrosion and priming & foaming. Internal conditioning – phosphate, Calgon, and carbonate treatment. External conditioning – demineralization. Municipal water treatment (screening, sedimentation, coagulation, filtration, disinfection-ozonolysis, UV treatment, chlorination), Reverse Osmosis – desalination.

PRACTICAL:

- Estimation of HCl using Na₂CO₃ as the primary standard
- Determination of alkalinity in the water sample.
- Determination of hardness of water by EDTA method.
- Determination of DO content of water sample by Winkler's method.

UNIT II NANOCHEMISTRY

Basics-distinction between molecules, nanomaterials and bulk materials; size-dependent properties (optical, electrical, mechanical, magnetic and catalytic). Types –nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro-spinning. Characterization - Scanning Electron Microscope and Transmission Electron Microscope - Principle and instrumentation (block diagram). Applications of nanomaterials – medicine including AYUSH, automobiles, electronics, and cosmetics.

PRACTICAL:

- Preparation of nanoparticles by Sol-Gel method/sonication method.
- Preparation of nanowire by Electrospinning.
- Study of morphology of nanomaterials by scanning electron microscopy

UNIT III CORROSION SCIENCE

Introduction to corrosion – chemical and electrochemical corrosions – mechanism of electrochemical and galvanic corrosions – concentration cell corrosion-soil, pitting, intergranular, water line, stress and microbiological corrosions-galvanic series-factors influencing corrosion- measurement of corrosion rate. Electrochemical protection – sacrificial anodic protection and impressed current cathodic protection. Protective coatings-metallic coatings (galvanizing, tinning), organic coatings (paints). Paints: Constituents and functions.

PRACTICAL:

- Corrosion experiment-weight loss method.
- Salt spray test for corrosion study.
- Corrosion prevention by electroplating.
- Estimation of corroded Iron by Potentiometry/UV-visible spectrophotometer

UNIT IV ENERGY SOURCES

Electrochemical cell, redox reaction, electrode potential – oxidation and reduction potential. Batteries – Characteristics; types of batteries; primary battery (dry cell), secondary battery (lead acid, lithium-ion battery) and their applications. Emerging energy sources – metal hydride battery, hydrogen energy, Fuel cells – H_2 - O_2 fuel cell. Supercapacitors –Types and Applications, Renewable Energy: solar heating and solar cells. Recycling and disposal of batteries.

PRACTICAL:

- Study of components of Lead acid battery.
- Measurement of voltage in a photovoltaic cell.
- Working of H₂ O₂ fuel cell

UNIT V POLYMER CHEMISTRY

Introduction: Functionality-degree of polymerization. Classification of polymers (Source, Structure, Synthesis and Intermolecular forces). Mechanism of free radical addition polymerization. Properties of polymers: Tg, tacticity, molecular weight-number average, weight average, viscosity average and polydispersity index (Problems). Techniques of polymerization: Bulk, emulsion, solution and suspension. Compounding and Fabrication Techniques: Injection, Extrusion, Blow and Calendaring. Polyamides, Polycarbonates and Polyurethanes – structure and applications. Recycling of polymers.

PRACTICAL:

- Determination of molecular weight of a polymer using Ostwald viscometer.
- Preparation of a polymer.
- Determination of molecular weight by Gel Permeation Chromatography.

TOTAL: 75 PERIODS

COURSE OUTCOMES:

- **CO1:** To demonstrate knowledge of water quality in various industries and develop skills in analyzing water quality parameters for both domestic and industrial purposes.
- **CO2:** To identify and apply fundamental concepts of nanoscience and nanotechnology for engineering and technology applications, and to develop skills in synthesizing nanomaterials and studying their morphology.
- **CO3:** To apply fundamental knowledge of corrosion protection techniques and develop skills to conduct experiments for measuring and preventing corrosion.
- **CO4:** To study the fundamentals of energy storage devices and develop skills in constructing and experimenting with batteries.
- **CO5:** To recognize and apply basic knowledge of different types of polymeric materials and develop skills in preparing and determining their applications for futuristic material fabrication needs.

TEXT BOOKS:

- 1. Jain P. C. & Monica Jain., "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 2015.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New

Delhi, 2012.

- 3. Dara S.S., "A Textbook of Engineering Chemistry", Chand Publications, 2004.
- 4. Laboratory Manual Department of Chemistry, CEGC, Anna University (2023).

REFERENCES:

- 1. Schdeva M.V., "Basics of Nano Chemistry", Anmol Publications Pvt Ltd, 2011.
- 2. Friedrich Emich, "Engineering Chemistry", Medtech, 2014.
- 3. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, "Polymer Science" New AGE International Publishers, 2009.
- 4. Vogel's Textbook of Quantitative Chemical Analysis (8th edition, 2014).

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	3	-	-	-	-	-
CO2	3	-	2	-	2	-	3	-	-	-	-	-
CO3	3	3	2	-	2	-	3	-	-	-	-	-
CO4	3	3	-	-	-	-	3	-	-	-	-	-
CO5	3	-	-	-	-	-	3	-	-	-	-	-
Avg	3	3	-	-	-	-	3	-	-	-	-	-

CO - PO Mapping

1' = Low; '2' = Medium; '3' = High

CS23C02

COMPUTER PROGRAMMING IN PYTHON

L T P C 3 0 2 4

COURSE OBJECTIVES:

- To understand fundamental structural programming concepts and problem-solving process.
- To solve problems using modular programming and decomposition techniques.
- To solve problems using data structures and abstraction techniques.
- To create programming solutions using libraries and packages.
- To design solutions to domain problems using programming problem-solving techniques.

UNIT I – STRUCTURED PROGRAMMING

Problem-Solving Strategies. Basic Problem-Solving Tools: Flowcharts, Pseudocode. Introduction to Programming Languages and Development Environments. Programming. Basic Concepts and Syntax: Variables, Identifiers, Data Types: Primitive Types and Strings, Statements, Operators, Expressions and its evaluation, Operator Precedence, Basic Arithmetic Operations. Principles of Structured Programming – Control Structures: Sequence, Selection, Iteration and Branching.

PRACTICALS:

- Design algorithms for simple computational problems
- Create Pseudo-code and Flow charts for simple computational problems
- Create Python programs using simple and nested selective control statements
- Create Python programs using simple and nested sequence & iterative control statements
- Create Python programs to generate series/patterns using control statements

UNIT II – MODULARITY AND DECOMPOSITION

Principles of Modular and Decomposition. Functions: Defining functions –Argument types – Function Name-spaces – Scoping: Global and Non-local. Principles of Recursion: Base case and Recursive cases – Develop and Analyze Recursive functions: Factorial, Fibonacci. Principles of First-Class and Higher-Order functions: Lambda functions – Functions as arguments.

PRACTICALS:

- Create Python programs using functions
- Create python program using recursion
- Create Python programs using lambda functions
- Create Python programs using first-class functions
- Create Python programs using higher-order functions

UNIT III – DATA STRUCTURES AND ABSTRACTIONS

Principles of Data Structures and Abstractions. String Methods and Manipulations,.Lists: List Operations and Methods, List comprehensions, Nested List comprehensions, Matrix operations using Lists. Tuples and sequences. Sets and Operations. Dictionaries: Dictionary operations, Dictionary comprehensions, Nested Dictionary comprehensions.

9+6

9+6

9+6

Comparing Data Structures. Search and Sort Data Structures. Principle of Functional Programming and Tools : map, filter, and reduce.

PRACTICALS:

- Create Python programs for strings manipulations.
- Design Python programs using Lists, Nested Lists and Lists comprehensions
- Create Python programs using Tuples, Nested Tuples, and Tuple comprehensions
- Create Python programs creating Sets and performing set operations
- Create Python programs using Dictionary, Nested Dictionary and comprehensions
- Create Python programs by applying functional programming concepts

UNIT IV – LIBRARIES AND MODULES

Exceptions: Syntax errors, Exceptions, Exception types, Handling exceptions, Raising exceptions. Files: File Path, Type of files, opening modes, Reading and Writing text files, Handling other format Data files. Modules: Creating Modules, import and from statements, Executing modules as scripts, Standard modules. Packages and Importing from packages

PRACTICALS:

- Design Python programs to handle errors and exceptions
- Create, import, and use pre-defined modules and packages
- Create, import, and use user-defined modules and packages
- Create Python programs to perform various operations on text files
- Create Python programs to perform various operations on other data file formats.

UNIT V – SIMPLE PROBLEM SOLVING TECHNIQUES IN PROGRAMMING 9+6

Data Structures for Problem Solving: Stack, Queue. Principles of Divide and Conquer: Binary Search. Principles of Greedy Algorithms: Minimum Coin Change Problem. Case studies on programming application of problem-solving techniques in different fields of engineering.

PRACTICALS:

- Create python programs to implement stack and queue.
- Create python programs to implement binary search.
- Create python programs to solve minimum coin change problem.
- Case study on developing python solution to a domain specific problems.

TOTAL = 45 + 30 = 75 PERIODS

COURSE OUTCOMES

- 1. Understand fundamental structural programming concepts and problem-solving process.
- 2. Solve problems using modular programming and decomposition techniques.
- 3. Solve problems using data structures and abstraction techniques.
- 4. Create programming solutions using libraries and packages.
- 5. Design solutions to domain problems using programming problem-solving techniques.

TEXT BOOKS

1. Reema Thareja, Python Programming using Problem Solving Approach, Oxford University Press, First Edition, 2017.

9+6

2. S. Sridhar, J. Indumathi, V. M. Hariharan, Python Programming, Pearson Education, First Edition, 2023

REFERENCE BOOKS

- 1. Paul Deitel, Harvey Deitel, Python for Programmers, Pearson Education, 2020.
- John V Guttag. Introduction to Computation and Programming Using Python, With Application to Computational Modeling and Understanding Data. Third Edition, The MIT Press, 2021
- 3. Mark Lutz, Learning Python, 5th Edition, O'Reilly Media, Inc.
- 4. Python official documentation and tutorial, <u>https://docs.python.org/3/</u>
- 5. Numerical Python official documentation and tutorial, <u>https://numpy.org/</u>

со	PO1	PO2	PO3	PO4	POS	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2		2		1								1	1	
2	2		2		1								1	1	
3	2	1	2		1								1	1	
4	2	1	2	1	1								1	1	
5	2	1	2	1	1								1	1	
Avg	2	1	2	1	1								1	1	

CO's-PO's & PSO's MAPPING

1 - low, 2 - medium, 3 - high, '-' - no correlation

ME23C03

ENGINEERING MECHANICS

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Determining the resultant forces acting on a particle in 2D and 3D and for applying methods of equilibrium on a particle in 2D and 3D.
- Evaluating the reaction forces for bodies under equilibrium, for determining the moment of a force, moment of a couple, for resolving force into a force-couple system and for analyzing trusses
- Assessing the centroids of 2D sections / center of gravity of volumes and for calculating area moments of inertia for the sections and mass moment of inertia of solids.
- Evaluating the frictional forces acting at the contact surfaces of various engineering systems and for applying the work-energy principles on a particle.
- Determining kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

UNIT I STATICS OF PARTICLES

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles -Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.

UNIT II EQUILIBRIUM OF RIGID BODIES AND TRUSSES

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about a Point, Varignon's Theorem, Rectangular Components of the Moment of a Force, Scalar Product of Two Vectors, Mixed Triple Product of Three Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple, Equivalent Couples, Addition of Couples, Resolution of a Given Force into a Force -Couple system, Further Reduction of a System of Forces, Equilibrium in Two and Three Dimensions - Reactions at Supports and Connections – Analysis of Trusses – Method of Joints and Method of Sections.

UNIT III DISTRIBUTED FORCES

Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration.

Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration , Polar Moment of Inertia , Radius of Gyration of an Area , Parallel-Axis Theorem , Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates , Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION AND WORK PRINCIPLES

The Laws of Dry Friction. Coefficients of Friction, Angles of Friction, Wedges, Wheel Friction. Rolling Resistance, Ladder friction. Work of a Force, Kinetic Energy of a Particle, Principle of Work and Energy,

9+3

9+3

9+3

9+3

Principle of Impulse and Momentum, Impact, Method of Virtual Work - Work of a Force, Potential Energy, Potential Energy and Equilibrium.

UNIT V DYNAMICS OF PARTICLES AND RIGID BODIES

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics- Newton's Second Law of Motion -Equations of Motions, Dynamic Equilibrium, Energy and Momentum Methods – Kinematics of Rigid Bodies and Plane Kinetics.

TOTAL : 60 Periods

9+3

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- 1. To determine the resultant forces acting on a particle in 2D and 3D and to apply methods of equilibrium on a particle in 2D and 3D.
- 2. Evaluate the reaction forces for bodies under equilibrium, to determine moment of a force, moment of a couple, to resolve force into a force-couple system and to analyze trusses
- 3. Assess the centroids of 2D sections / center of gravity of volumes and to calculate area moments of inertia for the sections and mass moment of inertia of solids.
- 4. Evaluate the frictional forces acting at the contact surfaces of various engineering systems and apply the work-energy principles on a particle. evaluate the kinetic and kinematic parameters of a particle.
- 5. Determine kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

TEXT BOOKS:

1. Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, Sanjeev Sanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 12th Edition, 2019.

2. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018.

СО							P	SO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	3									3		
2	3	3	2	3									3		
3	3	3	2	3									3		
4	3	3	2	3									3		
5	3	3	2	3									3		
Avg	3	3	2	3									3		

UC23H02 தமிழரும் தொழில்நுட்பமும்/Tamils and Technology L T P C 1 0 0 1

3

அலகு I <u>நெசவு மற்றும் பானைத் தொழில்நுட்பம்</u>:

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் – கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு II <u>வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்</u>: 3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் – மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

அலகு III <u>உற்பத்தித் தொழில் நுட்பம்</u>:

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு உருக்குதல், மற்றும் தங்க நாணயங்கள் நாணயங்கள் அச்சடித்தல் மணி _ உருவாக்கும் — தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

அலகு IV <u>வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்:</u> 3

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அலகு V <u>அறிவியல் தமிழ் மற்றும் கணித்தமிழ்</u>:

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி – தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TEXT-CUM-REFERENCE BOOKS

 தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கழகம்).

TOTAL : 15 PERIODS

3

3

- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (கொல்லியல் துறை வெளியீடு)
- பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

TAMILS AND TECHNOLOGY	L	т	Ē	C	С
	_				-

1001

3

3

UNIT I WEAVING AND CERAMIC TECHNOLOGY

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

Designing and Structural construction House & Designs in household materials during Sangam Age -Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Navaka Period -Type study (Madurai Meenakshi Temple)-Thirumalai NayakarMahal -ChettiNadu Houses, Indo-Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel - Copper and gold-Coins as source of history - Minting of Coins - Beads making-industries Stonebeads -Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of KumizhiThoompuof Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing -KnowledgeofSea -Fisheries - Pearl - Conche diving - Ancient Knowledge ofOcean -KnowledgeSpecificSociety.

3

3

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL : 15 PERIODS

TEXT-CUM-REFERENCEBOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநால் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

MA23C06 PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX **FUNCTIONS**

OBJECTIVES:

- To familiarize the students to solve of partial differential equations.
- To familiarize the students in solving boundary value problems. .
- To understand the concepts of Complex functions.
- To familiarize complex mappings and its property.
- To familiarize the students with integration of complex functions. •

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation – Solutions of first order equations – Standard types and Equations reducible to standard types - Lagrange's Linear equation - Solution of linear equations of higher order with constant coefficients – Linear non-homogeneous partial differential equations.

APPLICATIONS OF FOURIER SERIES TO PARTIAL DIFFERENTIAL UNIT II 9+3EQUATION

Classification of partial differential equations- Method of separation of variables - Solutions of one dimensional wave equation and one-dimensional heat equation – Steady state solution of two dimensional heat equation – Fourier series solutions in Cartesian coordinates.

UNIT III **ANALYTIC FUNCTIONS**

Limit, Continuity and Differentiation of Complex functions - Analytic functions – Necessary and sufficient conditions for analyticity - Properties of analytic functions – Harmonic conjugates – Construction of analytic function - elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

UNIT IV CONFORMAL MAPPING

Introduction to complex mapping - Conformal mapping - Condition for conformality - Standard mappings: a+z, az, az+b, $\frac{1}{z}$, z^2 , e^z - Bilinear transformations – Physical applications: Fluid flow and heat flow problems.

UNIT V INTEGRATION OF COMPLEX FUNCTIONS

Line integral - Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Cauchy's Residue theorem – Application of residue theorem for evaluation of real integrals - Use of circular contour and semicircular contours (excluding poles on real lines).

TOTAL: 60 PERIODS

Laboratory based exercises / assignments / assessments will be given to students from the content of the course wherever applicable.

Branch specific / General Engineering applications based on the content of each units will be introduced to students wherever possible.

Suggested Laboratory based exercises / assignments / assessments :

- Symbolic computation of solution to PDE using PDE Solver
- 2. Conformal mapping can be done by plotting the curves and surfaces

9+3

9+3

9+3

9+3

С

4

. Т Ρ

3 1 0

OUTCOMES:

CO1 :Understand the concepts of partial differential equations in practical situations.

- CO2 :Obtain the solutions of the partial differential equations using Fourier series.
- CO3 :Understand the Concepts of complex functions in practical situations.
- CO4 :Understand the conformal mapping and its applications.
- CO5 : Apply the complex integrations in engineering problems.

TEXT BOOKS:

- 1. Erwin Kreyszig "Advanced Engineering Mathematics", John Wiley & Sons., New Delhi, 2015.
- 2. Wylie C. R. and Barrett L. C "Advanced Engineering Mathematics", Tata McGraw-Hill., New Delhi, 2019.
- 3. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, New Delhi, 2017.

REFERENCES:

- 1. Mathews J. H. and Howell R. W "Complex Analysis for Mathematics and Engineering", Narosa Publishing House. New Delhi, 2012.
- 2. Peter V.O Neil "Advanced Engineering Mathematics", Cengage., New Delhi, 2016.
- 3. Dennis G Zill "Advanced Engineering Mathematics", Jones & Bartlett India P Ltd., New Delhi, 2017.
- 4. Dean G Duffy "Advanced Engineering Mathematics with MATLAB", CRC., USA, 2010.
- 5. Spiegel, M.R., Theory and Problems of Complex Variables and its Application (Schaum's Outline Series), McGraw Hill Book Co., Singapore (1981).

Course					PROGR	AMME	OUTC	OMES				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1 :	3	3	2	3	1	2	1	1	1	1	1	3
CO2 :	3	3	2	3	1	2	1	1	1	1	1	3
CO3 :	3	3	2	3	1	2	1	1	1	1	1	3
CO4 :	3	3	2	3	1	2	1	1	1	1	1	3
CO5 :	3	3	2	3	1	2	1	1	1	1	1	3

CO – PO Mapping:

AU23301 MANUFACTURING PROCESSES AND MACHINE TOOLS

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for

- Applying the working principles of various metal casting processes.
- Applying the working principles of various metal joining processes.
- Analyzing the working principles of forming of metals.
- Applying the working principles of plastics moulding.
- Applying the working principles of machine tools

UNIT – I METAL CASTING PROCESSES

Sand Casting - Sand Mould - Type of patterns - Pattern Materials - Pattern allowances -Moulding sand Properties and testing - Cores -Types and applications- Moulding machines -Types and applications- Melting furnaces - Principle of special casting processes- Shell, investment - Ceramic mould - Pressure die casting - Centrifugal Casting - CO casting - Defects in Sand casting process– Stir casting - Defects in Sand casting.

PRACTICALS: Preparing green sand moulds with cast patterns.

UNIT – II **METAL JOINING PROCESSES**

Fusion welding processes – Type of Gas welding – Flame characteristics – Filler and Flux materials- Arc welding, Electrodes, Coating and specifications - Principles and types of Resistance welding – Gas metal arc welding – Submerged arc welding – Electro slag welding – Gas Tungsten arcwelding – Principle and application of special welding processes – Plasma arc welding - Thermit Welding - Electron beam welding - Friction welding - Friction stir welding -Diffusion welding – Weld defects – Brazing and soldering – methods and process capabilities – Adhesive bonding, Types and application.

PRACTICALS: Fabricating simple structural shapes using Welding.

UNIT – III FORMING PROCESSES

Hot working and cold working of metals - Forging processes - Open, impression and closed die forging - Characteristics of the processes - Typical forging operations - rolling of metals - Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations - Formability of sheet metal - Test methods.

PRACTICALS: Rolling of sheet metal.

MANUFACTURE OF PLASTIC COMPONENTS UNIT – IV

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding – Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

PRACTICALS: Making parts using injection moulding machine.

9L. 6P

3 0 2 4

Ρ

Т

С

9L, 6P

9L. 6P

9L, 6P

UNIT – V MACHINE TOOLS

Introduction to machine tool- Basic elements of machine tool- machine tool drives- Lathe machine -Tool geometry, machining parameters- Lathe operations -Facing, Turning, Drilling, Boring, Taper turning by different methods- Milling Machine: types, working principle, milling parameters, operations- different types of indexing methods in milling. Drilling- Types of drilling machines, portable, bench, upright, Radial, Spot facing- Drilling process -Reaming: Types of reamers, reaming operations- Broaching-Types of broaches- tool material, teeth terminology and other details -Working principle and operation of shaping, planning and slotting.

PRACTICALS: Turning on circular parts using lathe machine, Gear cutting using milling machine.

TOTAL: 45L + 30P = 75 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to

1. Apply the working principles of various metal casting processes.

Apply the working principles of various metal joining processes.

Analyze the working principles of bulk deformation of metals.

Apply the working principles of sheet metal forming process.

Apply the working principles of plastics moulding.

REFERENCES:

- 1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2006.
- 2. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 3. Gowri.S, P. Hariharan, A. Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 4. Hajra Chouldhary S.K. and Hajra Choudhury. A. K., Elements of Workshop Technology, Volume I and II, Media Promoters and Publishers Private Limited, Mumbai, 1997.
- 5. Paul Degarma E., Black J.T. and Ronald A. Kosher, Materials and Processes, in Manufacturing, Eight Edition, Prentice Hall of India, 1997.
- 6. Rao. P. N., Manufacturing Technology Foundry, Forming and Welding, 2ndEd.Tata McGraw Hill, 2003.
- 7. Sharma, P.C., A Textbook of Production Technology, S. Chand and Co. Ltd., 2004.

CO 2							POs						PS	SOs
COs	1	1 2 3 4 5 6 7 8 9 10 11												2
1	3	3	3	3	3	2	1	2	2	2	1	3	3	3
2	3	3	3	3	3	2	1	2	2	2	1	3	3	3
3	3	3	3	3	3	2	1	2	2	2	1	3	3	3
4	3	3	3	3	3	2	1	2	2	2	1	3	3	3
5	3	3	3	3	3	2	1	2	2	2	1	3	3	3
Avg	3	3	3	3	3	2	1	2	2	2	1	3	3	3

Mapping of CO with PO

1 – Slight, 2 – Moderate, 3 – Substantial

The main learning objective of this course is to prepare the students for

To impart knowledge of basic principles of thermodynamics via real world engineering examples To analyse and evaluate cardinal air standard cycles

To analyse and evaluate cardinal Steam power cycles

Summarize the governing concepts of Refrigeration and Air conditioning

To inculcate various modes of heat transfer, related to real time scenarios of thermodynamics applied in engineering practice.

UNIT – I **BASIC THERMODYNAMICS**

Systems, closed, open and isolated. Property, state, path and process, quasi-static process, Zeroth low, First law. Steady flow energy equation. Engineering Applications of Steady flow energy equation Heat and work transfer in flow and non-flow processes. Second law, Kelvin-Planck statement - Clausius statement - Concept of Entropy, Clausius inequality, Entropy changes in non- flow processes. Available and Unavailable Energy.

PRACTICALS: Determination of Specific heat of a solid.

UNIT – II AIR STANDARD CYCLES AND COMPRESSORS 9L, 6P

Cycle, Carnot cycle, Otto, Diesel, Dual combustion and Brayton cycles. Air standard efficiency. Mean effective pressure. Comparison of cycles based on same compression ratio and same heat input.

PRACTICALS: Performance test on 4 stroke engines.

UNIT – III STEAM AND JET PROPULSION

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagram. p-v-T surface Properties of steam, Dryness fraction, Quality of steam-by-steam tables and Mollier chart -Rankine cycle, Work done, Steam rate.

PRACTICALS: Free and forced convective heat transfer from a flat plate,

UNIT – IV REFRIGERATION

Principles of refrigeration, Vapour compression – Types of VCR system with respect to condition of vapour, Problems, Vapour absorption types, comparison - Co-efficient of performance (COP), Properties of refrigerants.

PRACTICALS: COP test on vapor compression refrigeration test rig.

UNIT – V HEAT AND MASS TRANSFER

Modes of heat transfer, Heat conduction in parallel, radial and composite wall – Heat conduction through hollow and composite cylinders, spheres. Basics of Convective heat transfer. Fundamentals of Radiative heat transfer – Flow through heat- exchangers. -Determination for LMTD for parallel flow and AMTD for counter flow heat exchanger

PRACTICALS: Determination of effectiveness of counter flow heat exchanger, Determination of effectiveness of parallel flow heat exchanger.

TOTAL: 45L + 30P = 75 PERIODS

APPLIED THERMODYNAMICS

9L, 6P

9L, 6P

9L, 6P

9L, 6P

2 30 4

С

LTP

AU23C01

COURSE OBJECTIVES:

COURSE OUTCOMES:

Upon completion of the course, the students

1. Will demonstrate understanding of the nature of the thermodynamic processes for pure substances of ideal gases

Will interpret First Law of Thermodynamics and its application to systems and control volumes Will solve any flow specific problem in an engineering approach based on basic concepts and logic sequences.

Will compare and contrast between various types of refrigeration cycles

Will get exposed to the basics and modes of heat transfer

REFERENCES:

- 1. Chattopadhyay. P Engineering Thermodynamics", oxford University Press, New Delhi, 2010.
- 2. Nag.P.K., "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2007.
- 3. Rathakrishnan E., "Fundamentals of Engineering Thermodynamics" Prentice-Hall India, 2005.
- 4. Ganesan.V, "Thermodynamics: Basics and Applied" McGraw Hill Education (India) Private Limited, 2018.
- 5. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 6. Holman.J.P., "Thermodynamics", 3rd Ed. McGraw-Hill, 2007.
- 7. Mathur & Sharma Steam Tables, Jain Publishers, New Delhi.
- 8. Merala C, Pother, Craig W, Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGraw-Hill, New Delhi, 2004.
- 9. Ramalingam K.K. "Thermodynamics", Sci-Tech Publications, 2006

COs							POs						PS	SOs
COS	1	1 2 3 4 5 6 7 8 9 10 11											1	2
1	3	3	3	3	3	1	1	-	2	2	-	3	3	3
2	3	3	3	3	3	1	1	-	2	2	-	3	3	3
3	3	3	3	3	3	1	1	-	2	2	-	3	3	3
4	3	3	3	3	3	1	1	-	2	2	-	3	3	3
5	3	3	3	3	3	1	1	-	2	2	-	3	3	3
Avg	3	3	3	3	З	1	1	-	2	2	-	3	3	3

Mapping of CO with PO

1 - Slight, 2 - Moderate, 3 - Substantial

MECHANICS OF SOLIDS

COURSE OBJECTIVES:

The objectives of this course are

- 1. To know about how a solid (materials, structures) behaves when it is exposed to forces and deformations.
- 2. To apply the fundamental concepts of principle of superposition, equilibrium, compatibility, force deformation, and stress-strain relationships to the solid and structural mechanics problems.
- 3. To analyze determinate and indeterminate bars, beams, to determine axial forces, torques, shear forces, and bending moments
- 4.To have physical insight into distribution of stresses and strains in structural members
- 5. To identify the biaxial stresses in acting in a body or an element.

STRESS - STRAIN, AXIAL LOADING UNIT – I

Stress and strain, elastic limit, Hooke's law, factor of safety, shear stress, shear strain, relationship between elastic constants. Stresses in stepped bars, uniformly varying sections, composite bars due to axial force. Lateral strain, Poisson's ratio, volumetric strain, changes in dimensions and volume. Thermal stresses and impact loading.

PRACTICALS: Tension Test.

UNIT – II STRESSES IN BEAMS

Beam – Definition, types of end-supports, types of beams, types of loading. Shear force diagram and bending moment diagram for cantilever, simply supported and overhanging beams under point load, UDL, UVL and moments. Euler beam theory - Bending equation, section modulus, Bending stress in beams – Shear stress in beams. Unsymmetric bending.

PRACTICALS: Torsion Test.

UNIT – III DEFLECTION OF BEAMS AND COLUMNS 9L. 6P

Governing differential equation - Problems on Double integration method - Macaulay's Method -Moment area method. Concepts of Conjugate Beam method and Method of superposition. Castiglianos1st and 2ndtheorems. Columns - different end conditions - buckling load - Euler's theory - Rankine's formula.

PRACTICALS: Deflection of Beams

UNIT – IV TORSION AND SPRINGS

Theory of torsion and assumptions - torsion equation, polar modulus, stresses in solid and hollow circular shafts, power transmitted by a shaft, shafts in series and parallel, deflection in shafts fixed at the both ends. Springs - types, Deflection expression for closed coiled helical spring - Stress in springs.

PRACTICALS: Testing of Springs

UNIT – V **BI-AXIAL STRESS**

Principal stresses, normal and tangential stresses, maximum shear stress - analytical and

1 Т Ρ С 2 0 3 4

9L, 6P

9L, 6P

9L, 6P

9L, 6P

graphical method. Stresses in combined loading. Thin-walled cylinder under internal pressure – changes in dimensions – volume. spherical shells subjected to internal pressure – deformation in spherical shells – Lame's theory. Strain energy.

PRACTICALS: Impact test, Hardness Test

TOTAL: 45L + 30P = 75 PERIODS

COURSE OUTCOMES:

At the end of the course, students will

- 1. Know about how a solid (materials, structures) behaves when it is exposed to forces and deformations.
- 2. Apply the fundamental concepts of principle of superposition, equilibrium, compatibility, force-deformation, and stress-strain relationships to the solid and structural mechanics problems
- 3. Analyze determinate and indeterminate bars, beams, to determine axial forces, torques, shear forces, and bending moments.
- 4. Have physical insight into distribution of stresses and strains in structural members.
- 5. Identify the biaxial stresses in acting in a body or an element.

REFERENCES:

- 1. James M Gere, Barry J Goodno, "Mechanics of Materials, SI Edition", Ninth Edition, Cengage Learning India Pvt. Ltd., 2022
- 2. Russell C. Hibbeler, "Mechanics of Materials", Tenth Edition, Pearson education, 2022
- 3. Stephen Timoshenko, 'Strength of Materials', Vol I & II, CBS Publishers and Distributors, 3rd edition, 2021.
- 4. Roy R Craig, "Mechanics of Materials", Third Edition, John Wiley & Sons, 2011
- 5. R.K. Rajput, 'Strength of Materials', S Chand; 6th Edition, 2015.
- 6. Timothy A. Philpot, "Mechanics of Materials: An Integrated Learning System," 4thEdition, Wiley, 2017.
- 7. William A. Nash, Merle C. Potter, "Schaum's Outline of Strength of Materials", 7thEdition, McGraw Hill Education, 2019
- 8. Ramamrutham S, "Strength of Materials", Dhanpat Rai Publishing Company, 16th Edition, 2011
- 9. Clive L. Dym, Irving H. Shames, "Solid Mechanics: A Variational Approach, Augmented Edition", Springer publishers, 2013
- 10. Saad, M. H., "Elasticity: Theory, Applications and Numerics", Academic Press; 3rdedition, 2014
- 11. Timoshenko, S. P., J. N. Goodier, "Theory of Elasticity", McGraw Hill Education; 3rdedition, 2017
- 12. Srinath, L. S, "Advanced Mechanics of Solids", McGraw Hill Education, 3rdedition, 2017
- Crandal, S, Lardner, T, Dahl, N and Sivakumar, M. S., An Introduction to Mechanics of Solids", McGraw-Hill Education; 2nd edition, 1978

					Ma	appin	g of C	:0 wi	th PO					
COs							POs						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3 3 3 1 1 - 2 2 - 3 3 3 3 1 1 - 2 2 -												3
2	3	3 3 3 3 1 1 - 2 2 -												3
3	3	3	3	3	3	1	1	-	2	2	-	3	3	3
4	3	3	3	3	3	1	1	-	2	2	-	3	3	3
5	3	3	3	3	3	1	1	-	2	2	-	3	3	3
Avg	3	3	3	3	3	1	1	-	2	2	-	3	3	3
			1	Qliz	aht 2	Mo	dorate	<u>`</u> 2	Subet	ontial				

1 – Slight, 2 – Moderate, 3 – Substantial

AU23302

AUTOMOTIVE ENGINES

L T P C 3 0 2 4

COURSE OBJECTIVES:

The main learning objective of this course is

- 1. To impart knowledge on basics of automotive SI and CI engines construction and working.
- 2. To understand the engine induction and ignition systems and its functional requirements.
- 3. To learn the properties of gasoline and diesel fuel and combustion process involved in diesel engines.
- 4. To impart the knowledge on engine cooling and lubrication requirements also to understand the requirements of supercharger and turbocharger.
- 5. To analyze the performance characteristics of SI and CI engine and learn modern developments in IC engine.

UNIT – I ENGINE FUNDAMENTALS

Introduction - classifications – Terminology - Engine components, functional requirements & materials- Working principle - valve and port timing diagram - Four stroke and two stroke cycle-Engine Cycles- Air Standard cycles – Otto Cycle-Fuel–air and actual cycle analysis–Engine operating parameters -Engine emissions –Two stroke engines – types–Merits and Demerits – Problems on cycles.

PRACTICALS: Draw the Valve and port timing diagrams.

UNIT – II INDUCTION AND IGNITION SYSTEM

Carburettors - requirements - working principles, types, different circuits – compensation and maximum power devices – Fuel air ratio calculation - Requirements and objective of diesel fuel injection system – types of injection - Jerk and distributor type pumps, Unit injector, common rail direct injection -. Electronic fuel injection, Effect of Injection timing - Injection lags. Types of injection nozzle, Split and Multiple injections. Mechanical and pneumatic governors. Problems on fuel injection. Ignition system- function and types- Ignition control mechanism – Electronic ignition system. Laser ignition.

PRACTICALS: Dismantle, study, and assembly of multi cylinder petrol engine. Dismantle, study, and assembly of multi cylinder diesel engine.

UNIT – III FUEL PROPERTIES AND COMBUSTION OF FUELS 9L, 6P

Introduction on Hydrocarbon fuels- Gasoline and Diesel fuel properties. Octane and cetane number – Laboratory tests for diesel fuel. Combustion stoichiometry -Combustion in SI engine – stages - Abnormal combustion- combustion chambers - Burned and Unburned mixture states – Flame structure and Speed - Cyclic variations in combustion -P-Theta and HRR curve for SI engine and CI Engine – Importance of air motion–Swirl, Squish andTumble.SI and CI engine stages of combustion. Delay period – factors affecting delay period. Knock formation in CI engines. Comparison of knock in CI & SI engines. Direct and indirect injection combustion chambers for diesel combustion. Chambers for Si and CI engine combustion.

PRACTICALS: Dismantle, study, and assembly of MPFI engine.

9L, 6P

9L, 6P

UNIT – IV ENGINE COOLING, LUBRICATING SYSTEMS AND 9L, 6P SUPERCHARGING, TURBOCHARGING

Cooling system – Function - types – Heat transfer analysis and calculation -Properties of coolants - Lubrication system- Function- types - Lubricant Properties. Supercharging – Introduction and its requirements - Thermodynamic cycle analysis for super charged engine. Types of superchargers - Modification of an engine for supercharging. Effect of supercharging on engine performance. Turbocharger – construction and working – Matching of turbocharger. - E-Turbocharger. Problems.

PRACTICALS: Dismantle, study, and assembly of CRDI engine.

UNIT – V ENGINE HEAT TRANSFER, TESTING AND RECENT 9L, 6P DEVELOPMENTS

Importance of heat transfer- Modes of heat transfer- heat transfer and engine energy balance -Indicated and brake MEP, operating variables that affects SI engine performance –Automotive and stationary diesel engine testing and standards – Engine power and efficiencies – Variables affecting engine performance – Methods to improve engine performance - Introduction to Stratified charge engine, LHR engines, HCCI and RCCI engines. Variable valve timing.

PRACTICALS: Performance test on a 4-stroke engine.

COURSE OUTCOMES:

TOTAL: 45L + 30P = 75 PERIODS

Upon completion of the course, students will be able to I

- 1. Understand and remember engine glossaries, identify various components of SI and CI engines and its principle of working.
- 2. Define and interpret the knowledge on fuel induction system.
- 3. Illustrate and correlate the knowledge on engine combustion and its various effects.
- 4. Explain and apply their knowledge in analyzing the requirement of engine sub systems.
- 5. Analyze and Evaluate engine performance and exposed to gain knowledge on recent developments of prime sources.

REFERENCES:

- 1. V. Ganesan, Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi,
- 2. John B. Heywood, "Internal Combustion Engines", McGraw-Hill Book Company, ISBN No: 0-07-100499-8
- 3. M.L. Mathur and R.P. Sharma, Internal Combustion Engine, Dhanpath Rai Publications (P) Ltd, New Delhi-110002.
- 4. Heinz Heisler, Advanced engine technology. Butterworth Heinemann publications
- 5. Heldt, P.M., High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta,
- 6. K.K. Ramalingam, internal Combustion Engines, Sci Tech Publications, Chennai, 2003.
- 7. Maleev, V.M, Diesel Engine Operation and Maintenance, McGraw-Hill, 1974.
- 8. Obert, E.F, Internal Combustion Engine analysis and Practice, International Text Book Co., Scranton, Pennsylvania,1988.

Mapping of CO with PO

CO 2							POs						PS	SOs
COs	1	1 2 3 4 5 6 7 8 9 10 11											1	2
1	3	3	3	3	1	2	2	1	2	2	-	3	3	3
2	3	3	3	3	1	2	2	1	2	2	-	3	3	3
3	3	3	3	3	1	2	2	1	2	2	-	3	3	3
4	3	3	3	3	1	2	2	1	2	2	-	3	3	3
5	3	3	3	3	1	2	2	1	2	2	-	3	3	3
Avg	3	3	3	3	1	2	2	1	2	2	-	3	3	3

1 – Slight, 2 – Moderate, 3	3 – Substantial
-----------------------------	-----------------

COURSE OBJECTIVE:

The objective of the course is four-fold:

- 1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

MODULE I: INTRODUCTION

(3L,6P)

Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration– Its content and process; 'Natural acceptance' and Experiential Validation- as the process for self-exploration Continuous Happiness and Prosperity- A look at basic Human Aspirations Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Practical Session: Include sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

MODULE II: HARMONY IN THE HUMAN BEING

Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer), Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.

Practical Session: Include sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

MODULE III: HARMONY IN THE FAMILY AND SOCIETY

(3L,6P)

(3L,6P)

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship, Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Practical Session: Include sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

MODULE IV: HARMONY IN THE NATURE AND EXISTENCE (3L,6P)

Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all- pervasive space, Holistic perception of harmony at all levels of existence.

Practical Session: Include sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

MODULE V: IMPLICATIONS OF HARMONY ON PROFESSIONAL ETHICS (3L,6P)

Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations, Sum up.

Practical Session: Include Exercises and Case Studies will be taken up in Sessions E.g. To discuss the conduct as an engineer or scientist etc.

TOTAL: 45 (15 Lectures + 30 Practicals) PERIODS

COURSE OUTCOME:

By the end of the course, the students will be able to:

- 1. Become more aware of themselves, and their surroundings (family, society, nature);
- 2. Have more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- 3. Have better critical ability.
- 4. Become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- 5. Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

REFERENCES:

- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 3rd revised edition, 2023.
- 2. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 3. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

- 4. The Story of Stuff (Book).
- 5. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 6. Small is Beautiful E. F Schumacher.
- 7. Slow is Beautiful Cecile Andrews.
- 8. Economy of Permanence J C Kumarappa
- 9. Bharat Mein Angreji Raj PanditSunderlal
- 10. Rediscovering India by Dharampal
- 11. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 12. India Wins Freedom Maulana Abdul Kalam Azad
- 13. Vivekananda Romain Rolland (English)
- 14. Gandhi Romain Rolland (English)

Web URLs:

- 1. Class preparations: <u>https://fdp-si.aicte-india.org/UHV-II%20Class%20Note.php</u>
- 2. Lecture presentations: <u>https://fdp-si.aicte-india.org/UHV-II_Lectures_PPTs.php</u>
- 3. Practice and Tutorial Sessions: <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Practice%20Sessions.php</u>

Articulation Matrix:

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1						1	1	1	3			3
CO2						1	1	1	3			3
CO3						3	3	2	3		1	3
CO4						3	3	2	3		1	3
CO5						3	3	3	3		2	3

AU23401	AUTOMOTIVE CHASSIS	L	Т	Ρ	С
AU23401	AUTOMOTIVE CHASSIS	3	0	2	4

COURSE OBJECTIVES:

The main learning objective of this course is

- 1. To understand the basic knowledge about various vehicle frames, front axles, steering systems and understand the conditions for true rolling motion of wheels during steering.
- 2. To recognize the construction and working principle of drive line, final drive and differential systems
- 3. To review the knowledge about the constructional feature of rear axle, wheels and tyres.
- 4. To evaluate the working principles of both conventional and independent suspension system.
- 5. To demonstrate working principle of braking system used in automobile.

UNIT - I INTRODUCTION, FRAME, STEERING SYSTEM

Types of Chassis layout, with reference to Power Plant location and drive, various types of frames, Loads acting on vehicle frame, Constructional details and materials for frames, Testing of frames, Types of Front Axles and Stub Axles, Front Wheel Geometry, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over–Steer and Under–Steer, Reversible and Irreversible Steering, EPAS.

Practicals: Study different chassis layouts, Study on power assisted steering system.

UNIT - II **PROPELLER SHAFT AND FINAL DRIVE**

Effect of Driving Thrust, torque reactions and side thrust, Hotchkiss drive, torque tube drive, radius rods and stabilizers, Propeller Shaft, Universal Joints, Constant Velocity Universal Joints, Front Wheel drive, Final drive, different types, Double reduction and twin speed final drives, Differential principle and types, limited speed differential. Practical: Dismantle, study, and assembly of Front axle- Constant Velocity Joint.

UNIT - III **AXLES AND TYRES**

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full -Floating, Three–Quarter Floating and Semi–Floating Axles, Axle Housings and Types, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details. Practical: Dismantle, study, and assembly of Rear Axle-Differential.

UNIT - IV SUSPENSION SYSTEM

Need for Suspension System, Types of Suspension Springs, Constructional details and characteristics of Single Leaf, Multi-Leaf, Coil, Torsion bar, Rubber, Pneumatic and Hydro – elastic Suspension Spring Systems, Independent Suspension System, Telescopic Shock Absorbers.

Practical: Study on conventional and modern Suspension systems.

9+6

9+6

9+6

9+6

UNIT - V BRAKING SYSTEM

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Types and Construction, Hydraulic Braking System, Mechanical Braking System, Pneumatic Braking System, Power–Assisted Braking System, Anti–Lock Braking System.

Practical: Study on conventional and modern braking systems.

TOTAL: 75 PERIODS

COURSE OUTCOMES

Upon completion of the course, students will be able to

- **CO1** Identify the different types of chassis layout, frames used in Automotive.
- **CO2** Appraise different types of drive line systems and steering system drives used in Automotive.
- **CO3** Acquire knowledge about different types of front axle and rear axles, wheel and tyre used in motor vehicles.
- **CO4** Expose to the working principle of conventional and independent suspension systems.
- **CO5** Analyze working principles of brake and its subsystems.

TEXT BOOKS:

- 1. Kirpal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2017
- 2. K.K. Ramalingam, "Automobile Engineering", Scitech publication (India), 2011.
- 3. R.K. Rajput, A Text–Book of Automobile Engineering, Laxmi Publications Private Limited, 2015

REFERENCES:

- 1. Heinz Hazler, Modern Vehicle Technology, Butterworth, London, 2005.
- 2. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 3. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 4. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007
- 5. William. H. Crows Work shop Manuel 2005

CO-PO Mapping

COs	POs													PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
2	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
3	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
4	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
5	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
Avg	3	3	3	3	3	2	1	1	2	2	-	3	3	3	

1 – Slight, 2 – Moderate, 3 – Substantial

AU23402 VEHICLE BODY ENGINEERING AND ERGONOMICS

COURSE OBJECTIVES:

The main learning objective of this course is

- 1. To design and analyze Car body
- 2. To design and analyze of Bus body
- 3. To design and compare different Commercial vehicles
- 4. To analyze the Vehicle Aerodynamics
- 5. To improve the vehicle Ergonomics

UNIT - I CAR BODY DETAILS

Types of Car body - Saloon, convertibles, Limousine, Estate Van, Racing and Sports car – car body terminology - Visibility- regulations, driver's visibility, improvement in visibility and tests for visibility. Driver seat design -Car Body Construction - Various panels in car bodies – body materials. Safety: Safety design, safety equipment for cars – body correction – modern painting process.

UNIT - II BUS BODY DETAILS

Types of bus body: based on capacity, distance travelled and based on construction. – Bus body lay out, floor height, engine location, entrance and exit location. Types of metal sections used – Regulations – Constructional details: Conventional and integral.

UNIT - III COMMERCIAL VEHICLE DETAILS

Types of commercial vehicle bodies - Light commercial vehicle body. Construction details of Flat platform body, Tipper body and Tanker body – Dimensions of driver's seat in relation to controls – Driver's cab design.

UNIT - IV VEHICLE AERODYNAMICS

Objectives, Vehicle drag and types. Various types of forces and moments. Effects of forces and moments. Side wind effects on forces and moments. Various body optimization techniques for minimum drag. Wind tunnels – Principle of operation, Types. Wind tunnel testing such as: Flow visualization techniques, Airflow management test – measurement of various forces and moments by using wind tunnel balance.

UNIT - V VEHICLE ERGONOMICS

Introduction to Automotive Ergonomics, Ergonomics in Vehicle Design, Anthropometry in Designing Vehicles, Occupant Package, Controls and Displays Interface - Introduction to Field of View - styling in automotive design.

COURSE OUTCOMES

Upon completion of the course, students will be able to

- **CO1** Analyze different aspects of car body.
- **CO2** Analyze different types bus body.
- **CO3** Compare and analyze different types of commercial vehicles.
- **CO4** Analyze the role of various aerodynamic forces and moments, measuring instruments in vehicle body design.
- **CO5** Create new Ergonomic designs.

TOTAL: 45 PERIODS

9

9

9

9

Ρ

0

L

3

Т

0

С

3

9

TEXT BOOKS:

- 1. Dieler Anselm., "The passenger car body", SAE International, 2000
- 2. James E Duffy, "Body Repair Technology for 4-Wheelers", Cengage Learning, 2009.
- 3. Powloski, J., "Vehicle Body Engineering", Business Books Ltd., 1998.

REFERENCES:

- 1. Braithwaite, J.B., "Vehicle Body building and drawing", Heinemann Educational Books Ltd., London, 1997.
- 2. Giles, G.J., "Body construction and design", Illiffe Books Butterworth & Co., 1991.
- 3. John Fenton, "Vehicle Body layout and analysis", Mechanical Engg. Publication Ltd., London,1992.
- 4. Vivek D. Bhise," Ergonomics in The Automotive Design Process", CRS Press,2016William. H. Crows Work shop Manuel 2005

CO-PO Mapping

COs	POs													PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3	
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3	
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3	
4	3	3	3	1	2	1	1	1	1	1	1	2	3	3	
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3	
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3	

1 - Slight, 2 - Moderate, 3 - Substantial

AU23403 FLUID MECHANICS FOR AUTOMOTIVE L T P C APPLICATIONS 3 0 2 4

COURSE OBJECTIVES:

The main learning objective of this course is

- 1. Understand the basics of fluid mechanics
- 2. Appraise the equations of fluid motion and dimensional analysis
- 3. Analyze different types of fluid flows.
- 4. Analyze different types of models for fluid flows.
- 5. Evaluate flow measurement in pipes, hydraulic machinery

UNIT - I BASIC CONCEPTS

Classification of fluids and their properties. Measurement of pressure and viscosity. Hydrostatic forces on surfaces. Buoyancy and floatation. **Practicals:** Determine the coefficient of discharge using Flow through Venturi meter.

UNIT - II EQUATIONS OF FLUID FLOW

Kinematics. Motion of a fluid particle. Fluid deformation. Navier Stokes equation and Euler's equation. Basic laws of fluid motion in integral form and differential form. Linear momentum equation. **Practicals**: Conduct the performance test for Reciprocating pump.

UNIT - III INCOMPRESSIBLE INVISCID AND VISCOUS FLOWS 9+6

Bernoulli's equations and its applications. Flow measurement – Orifice plate, Venturi meter. Fully developed laminar flow between parallel plates. Laminar and turbulent flow through pipes. Velocity profiles, energy considerations in pipe flow. Calculation of head loss in pipe flow problems. Hydraulic and energy grade lines. **Practicals:** Determination of Flow through pipe losses (Major and Minor Losses).

UNIT - IV DIMENSIONAL ANALYSIS AND MODEL STUDIES 9+6

Dimensional analysis. Dimensional Homogeneity, Rayleighs method, The Buckingham-Pi theorem. Significant dimensionless groups. Dimensionless numbers, Similitude, Flow similarity and model studies. **Practicals:** Conduct the performance test for Centrifugal pump.

UNIT - V HYDRAULIC MACHINERY FOR VEHICLE APPLICATIONS 9+6

Impact of jets. Euler's equation. Turbines – classification, heads, efficiencies, velocity triangles. Turbochargers – selection, working principle. Pumps – classification and working principle. Fuel pumps – selection and working principle. **Practicals:** Conduct the performance test for Gear pump, Conduct the performance characteristics of Francis turbine.

TOTAL: 75 PERIODS

9+6

9+6

COURSE OUTCOMES

Upon completion of the course, students will be able to

- **CO1** Recognize the basics of fluid statics and dynamics
- **CO2** Appraise the equations of fluid motion
- **CO3** Evaluate flow measurement in pipes
- **CO4** Analyze dimensional analysis and model studies

CO5 Investigate hydraulic machinery used in vehicles

TEXT BOOKS:

1. R.K. Bansal, "A textbook of fluid mechanics and hydraulic machines", Laxmi Publications (P) Ltd, Revised Ninth Edition.

REFERENCES:

- 1. E. Rathakrishnan, "Fluid Mechanics: An Introduction", Prentice Hall of India (II Ed.), 2007.
- 2. Robert L. Mott, Joseph A. Untener, "Applied Fluid Mechanics", Pearson Publications (2014), Seventh edition.

CO 2	POs													PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	3	1	2	1	1	3	3	3	
2	3	3	3	3	3	2	3	1	2	1	1	3	3	3	
3	3	3	3	3	3	2	3	1	2	1	1	3	3	3	
4	3	3	3	3	3	2	3	1	2	1	1	3	3	3	
5	3	3	3	3	3	2	3	1	2	1	1	3	3	3	
Avg	3	3	3	3	3	2	3	1	2	1	1	3	3	3	

CO-PO Mapping

1 – Slight, 2 – Moderate, 3 – Substantial

AL102404	KINEMATICS AND DYNAMICS FOR	L	Т	Р	С
AU23404	AUTOMOTIVE APPLICATIONS	3	0	0	3

COURSE OBJECTIVES:

The main learning objective of this course is

- 1. To impart knowledge on various types of mechanisms and synthesis.
- 2. To impart skills and analyze the position, velocity and acceleration of mechanisms.
- To understand the effects of friction in motion of transmission and machine components.
- 4. To familiarize higher pairs like cams and gears.
- 5. To study the undesirable effects of unbalances resulting from prescribed motions in mechanisms.

UNIT - I **MECHANISMS**

Definition - Machine and Structure - Kinematic link, pair and chain - classification of Kinematic pairs – Constraint and motion – Degrees of freedom –Four Bar Chain – Single Slider crank –double – Crank rocker mechanisms – Inversions, applications – Introduction to Kinematic analysis – Determination of velocity and acceleration of simple mechanisms

UNIT - II FRICTION

Types of friction – friction in screw and nut – screw jack – pivot, collar and thrust bearings– belt (Flat and V) and rope drives – creep in belts – open and crossed belt drives – Ratio of tensions - Effect of centrifugal and initial tensions - condition for maximum power transmission.

UNIT - III **GEAR TRAINS & CAMS**

Gear trains - simple, compound and reverted gear trains - determination of speed and torque in epicyclic gear trains. Cam - Types of cams and followers - Cam design for different follower motions.

UNIT - IV VIBRATION

Free, forced and damped vibrations of single degree of freedom systems – force transmitted to supports – vibration Isolation – vibration absorption – torsional vibration of shafts – single and multi-rotor systems – geared shafts – critical speed of shafts.

UNIT - V **BALANCING OF COMPONENTS**

Static and dynamic balancing - single and several masses in different planes - primary and secondary balancing of reciprocating masses - Balancing of single and multi-cylinder engines – Governors and Gyroscopic effects.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

- Apply the kinematics and dynamics of machinery in design and analysis of CO1 engineering problems.
- CO2 Demonstrate the ability to synthesize and analysis mechanisms
- CO3 Select the gears and cam for their applications.
- CO4 Examine the concept of free, forced and damped vibrations
- CO5 Design rotating members according to balancing point of view.

9

9

9

9

9

TEXT BOOKS:

- 1. Rattan S.S., "Theory of machines", 5th edition 2019. Tata McGraw Hill publishing Co., New Delhi,
- 2. Bansal R.K., Brar J.S "A Text book of Theory of Machines", 6th edition 2023. Laxmi Publications Pvt Ltd., New Delhi.

REFERENCES:

- 1. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", Oxford University Press, 2017.
- 2. Ambekar A.G., "Mechanism and Machine Theory", PHI India Pvt Ltd, 2021
- 3. Gosh A and Mallick A.K., "Theory of Machines and Mechanisms", Affiliated East West press, 2009.
- 4. Rao J.S. and Dukkipati R.V., "Mechanism and Machine Theory", Second Edition, Wiley Eastern Limited, 2014.

CO-PO Mapping

COs							POs						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	1	2	2	2	1	3	3	3
2	3	3	3	3	3	2	1	2	2	2	1	3	3	3
3	3	3	3	3	3	2	1	2	2	2	1	3	3	3
4	3	3	3	3	3	2	1	2	2	2	1	3	3	3
5	3	3	3	3	3	2	1	2	2	2	1	3	3	3
Avg	3	3	3	3	3	2	1	2	2	2	1	3	3	3

AU23405	FUELS, LUBRICANTS AND	L	т	Ρ	С
AU23405	COOLANTS	3	0	2	4

COURSE OBJECTIVES:

The objectives of this course are

- 1. To import knowledge on the basic of refinery of fuels and lubricants
- 2. To analyze different theories of lubrication
- 3. To analyze Properties of fuels and lubricants for the design and operation of the I.C engines.
- 4. To obtain knowledge in testing of fuel properties
- 5. To analyze effect of additives

UNIT - I REFINERY OF FUELS AND LUBRICANTS 9-

Introduction to Structure of petroleum, refining Process-Distillation, cracking processes, Catalytic reforming, alkylation, isomerisation and polymerization, finishing processblending, products of refining process. Manufacture of lubricating oil base stocks, manufacture of finished automotive lubricants. **Practicals:** Draw a curve by performing ASME distillation test of fuels (gasoline / diesel).

UNIT - II THEORY OF LUBRICATION

Engine friction: introduction, total engine friction, effect of engine variables on friction, hydrodynamic lubrication, elasto hydrodynamic lubrication, boundary lubrication, bearing lubrication, functions of the lubrication system, introduction to design of a lubricating system.

Practicals: Find out the consistency of grease using Penetration test.

UNIT - III LUBRICANTS AND COOLANTS

Classification of lubricating oils, Specific requirements for automotive lubricants, oxidation deterioration and degradation of lubricants, tests on lubricants. Grease, classification, properties, test used in grease. Rerefining of used oils. Coolants – Types and Properties.

Practicals: Find out the density and viscosity of oil.

UNIT - IV PROPERTIES AND TESTING OF FUELS

Properties and testing of fuels- density, calorific value, flash point, fire point, distillation, vapour pressure, spontaneous ignition temperature, viscosity, pour point, flammability, ignitability, diesel index, API gravity, aniline point, carbon residue, Biofuel-properties and testing.

Practicals: Find out the flash and fire point.

UNIT - V FUEL AND LUBRICANT ADDITIVES

Fuel and lubricant Additives - mechanism, requirements of an additive, Specifications of fuels and lubricants. ASTM and SAE standards.

Practicals: Determine the Carbon residue on given sample of fuel.

TOTAL: 75 PERIODS

9+6

9+6

9+6

9+6

9+6

COURSE OUTCOMES

At the end of the course, students will be able to

- **CO1** Analyze Various refinery processes.
- **CO2** Compare different Theory of Lubrication.
- CO3 Test different properties of lubricants.
- **CO4** Test and analyze different properties fuels.
- **CO5** Analyze different types of additives for Fuels and lubricants.

TEXT BOOKS:

- 1. Ganesan.V, "Internal Combustion Engines", Tata McGraw-Hill Publishing Co., New Delhi,2017
- 2. George E. Totten, Editor, "Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing", ASTM International.

REFERENCES:

- 1. Paul Richards "Automotive fuels reference book" SAE International, Third edition 2014
- 2. Roger Frederick Haycock, John Hillier, Arthur J. Caines "Automotive lubricants Reference book", SAE International, Second edition 2004
- 3. Wilfrid Francis., "Fuels and Fuel Technology, Vol. I & II, Elsevier Ltd

CO-PO Mapping

<u> </u>							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	1	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

AUTOMOTIVE POLLUTION AND CONTROL AU23406

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students

- 1. To discuss the harmful effects of major pollutants on living beings and the environment
- 2. To analyze the formation of major pollutants like UBHC, CO, NOx, particulate matter and smoke
- 3. To design various control techniques to reduce pollutants due to combustion
- 4. To determine the various after treatment process to minimize emissions
- 5. To demonstrate the various devices used to measure pollutants and discuss the Emission standards followed in various nations

UNIT - I **EMISSION FROM VEHICLES**

Sources of Pollution, Various emissions from Automobiles — Formation — Effects of pollutants on environment and human health – Evaluation of emission standards. Lubricants handling and harmful discharges. Carbon capturing, Introduction to Electro Magnetic Emissions, and Functional Safety of emission control devices.

Practicals: Study of FTIR technique for emission measurement

UNIT - II **EMISSIONS FROM SPARK IGNITION ENGINE** 9+6

Gasoline standards - Effects of gasoline Properties on emissions -Emission formation in SI Engines- Carbon monoxide- Unburned hydrocarbon, NOx, Smoke — Effects of design and operating variables on emission formation - Variable valve timing and lift-Gaseous emissions from GDI engines

Practicals: Study of FID, NDIR, CLD, Measurement of HC, CO, CO2, O2, and NOx using exhaust gas analyzer.

UNIT - III EMISSION FROM COMPRESSION IGNITION ENGINE 9+6

Diesel Fuel standards- Effects of Diesel Properties on emissions -Formation of White, Blue, and Black Smokes, NOx, soot, formation mechanism Sulphur particulate and Intermediate Compounds – Physical and Chemical delay — Significance Effect of Operating variables on Emission formation --- Fuel injection variables

Practicals: Measurement of PM and PN emission from given engine

UNIT - IV **CONTROL STRATEGIES**

SI Engine control strategies - Catalytic converters — Charcoal Canister — Positive Crank case ventilation system, Secondary air injection, Thermal reactor, Laser Assisted Combustion- CI engine control strategies, EGR, HCCI, DOC, Particulate Traps, Regeneration methods, SCR, LNT-, Cetane number Effect.

Practicals: Measurement of smoke emissions using smoke meter

9+6

9+6

т

0

L

3

Ρ

2

С

4

UNIT - V TEST PROCEDURES AND EMISSION MEASUREMENTS

Constant Volume Sampling 1 and 3 (CVS1 &CVS3) Systems- Sampling Procedures — Chassis dyno - WHSC.WHTC, NRTC, NRSC – Eight mode and thirteen mode cycles for Emission Sampling — Sampling problems — Emission analyzers —NDIR, FID, Chemiluminescent, Smoke meters, Dilution Tunnel, SHED Test, Sound level meters. EMC/EMI testing of Electric electronic devices. Condensation Particulate counter, On-board pollution measurement equipment's (PEMS). Emission regulations for off-road vehicles. MIDC, WLTC.

Practicals: To classify the given vehicle for Homologation standards

TOTAL: 75 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- **CO1** Differentiate the various emissions formed in IC engines
- CO2 Analyze the effects of pollution on human health and environment
- **CO3** Design the control techniques for minimizing emissions
- **CO4** Categorize the emission norms
- **CO5** Identify suitable methods to reduce the noise emissions.

TEXT BOOKS:

- 1. B.P Pundir, Engine Emissions, Narosa publications 2nd edition 2017
- 2. D.J. Patterson and N.A. Henin, 'Emission from Combustion Engine and their control', Anna Arbor Science Publication,1985.
- 3. G.P. Springer and D.J. Patterson, Engine Emissions, Pollutant formation, Plenum Press, New York, 1986.

REFERENCES:

1. G. Amba Prasad Rao and T. Karthikeya Sharma, 'Engine Emission Control Technologies: Design Modifications and Pollution Mitigation Techniques', Apple Academic Press, 2020.

CO-PO Mapping

<u> </u>							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

1 - Slight, 2 - Moderate, 3 - Substantial

9+6

AU23501	ENGINEERING DESIGN	L	I	Р	C
AU23501	ENGINEERING DESIGN	3	Δ	2	Λ

(Use of Design Data Book is permitted)

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students

- 1. To understand the principals involved in evaluating the shape and dimensions of a component.
- 2. To satisfy functional and strength requirements.
- 3. To discriminate the basis on which the components have to be designed.
- 4. To learn the use of standard practices in design.
- 5. To understand the techniques used for fastening the machine parts

UNIT - I FUNDAMENTAL CONCEPTS IN DESIGN

Introduction to the design process-factors influencing machine design, selection of materials based on mechanical properties – Machine part: Simple stresses – Torsional and bending stress–variable stresses– Preferred numbers, Fits and Tolerances–Fatigue failure.

9+6

9+6

9+6

Practicals: Drawing, Dimensioning, and Detailing of Simple Machine parts.

UNIT - II DESIGN OF SHAFTS AND SPRINGS

Design of solid and hollow shafts based on strength, rigidity and critical speed – Design of Keys, keyways. Spring material –Types –Design of closed coiled helical springs and leaf springs. Design of lever.

Practicals: Drawing, Dimensioning, and Detailing of Springs.

UNIT - III DESIGN OF TEMPORARY AND PERMANENT JOINTS 9+6

Threaded fasteners - Bolted joints – Simple and eccentrically loaded bolted joints – Cotter and knuckle joint– Design of Cotter Joint- Knuckle Joint – Riveted joint –Types and uses– Design of riveted joints. Welded joint –Types and uses–Design of Welded joints.

Practicals: Drawing, Dimensioning, and Detailing of Couplings – Flange.

UNIT - IV DESIGN OF FLYWHEEL AND BEARINGS

Introduction – Coefficient of Fluctuation of Speed – Fluctuation of Energy-Coefficient of Fluctuation of Energy. Design of Flywheel Rim, Flywheel Arms. Design of Hub –Key Sliding contact bearings – Rolling contact bearings – types – materials. Bearing life –lubrication–. Design of journal bearings – Ball and Roller bearing.

Practicals: Drawing, Dimensioning, and Detailing of Bearings and Flywheel.

UNIT - V DESIGN OF GEARS

Types of gears - Terminology of gears- Design considerations – strength of gear teeth – Lewis equation– Design of spur gears – Design of helical gears – Design of bevel gears and worm gears.

Practicals: Drawing, Dimensioning, and Detailing of Spur & Helical gear.

TOTAL: 75 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- **CO1** Demonstrate knowledge on designing machine elements to withstand the loads and deformations.
- **CO2** Approach a design problem successfully, and take decisions whenever needed.
- **CO3** Demonstrate their skill in developing modern joining techniques for future electric vehicles
- **CO4** Interpret the design of bearings and create new bearings for the given load.
- **CO5** Interpret, design and select gears for varied applications.

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 5thEdition, McGraw Hill, New Delhi, 2020.
- 2. Jain, R.K., "Machine Design", 9th Edition Khanna Publishers, 1992.
- 3. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett, "Mechanical Engineering Design",11th Edition McGraw Hill, New Delhi, 2020

REFERENCES:

- 1. Ansel Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
- 2. "Design Data Hand Book", PSG College of Technology, 2013- Coimbatore.
- 3. M F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.
- 4. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2006.
- 5. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine component Design",7th Edition, Wiley, 2019

CO-PO Mapping

<u> </u>							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	1	2	2	2	1	3	3	3
2	3	3	3	3	3	2	1	2	2	2	1	3	3	3
3	3	3	3	3	3	2	1	2	2	2	1	3	3	3
4	3	3	3	3	3	2	1	2	2	2	1	3	3	3
5	3	3	3	3	3	2	1	2	2	2	1	3	3	3
Avg	3	3	3	3	3	2	1	2	2	2	1	3	3	3

AU23502	AUTOMOTIVE TRANSMISSION	L	Т	Р	С
A023302	AUTOMOTIVE TRANSMISSION	3	0	2	4

COURSE OBJECTIVES:

The objective of this course is to prepare the students to gain knowledge in the

- 1. Construction and principle of mechanical transmission components clutch and gear box
- 2. Hydrodynamic devices hydrostatic devices
- 3. Automatic transmission system, Electric drive used in road vehicles.

UNIT - I CLUTCH

Requirement of transmission system, Types of transmission system, Requirement of Clutches - Functions-Types of clutches, construction and operation of Single plate, multi plate and Diaphragm Spring clutches. Centrifugal clutch, DCT, Electronic clutch.

Practicals: Dismantling, study on components and assembly of single plate clutch

UNIT - II **GEAR BOX**

Purpose of gear box. Construction and working principle of sliding, constant and synchromesh gear boxes, Automatic manual transmission. Introduction to epicycle gear trains, Numerical examples on performance of automobile such as Resistance to motion, Tractive effort, Engine speed & power and acceleration. Determination of gear ratios for different vehicle applications.

Practicals: Dismantling, study on components and assembly of sliding mesh gearbox and constant mesh gear box.

UNIT - III HYDRODYNAMIC TRANSMISSION

Fluid coupling – principles - Performance characteristics – advantages – limitations – drag torque – reduction of drag torque. Torque converter - principles - Performance characteristics - advantages - limitations - multistage and polyphase torque converters.

Practicals: Dismantling, study on components and assembly of torque converter.

UNIT - IV HYDROSTATIC DRIVE

Hydrostatic drive; various types of hydrostatic systems – Principles of Hydrostatic drive system. Advantages and limitations. Comparison of hydrostatic drive with hydrodynamic drive, construction and working of typical Janny hydrostatic drive.

Practicals: Dismantling, study on components and assembly of multi plate clutch.

UNIT - V AUTOMATIC TRANSMISSION AND ELECTRIC DRIVE 9+6

Wilson gear box-Cotal electric transmission. Chevrolet "Turboglide" transmission. – Four speed longitudinally mounted automatic transmission -Hydraulic control systems of automatic transmission. Continuously Variable Transmission (CVT) — types – Operations.

9+6

9+6

9+6

9+6

Automated Manual Transmission (AMT). Electric drive-types- Principle of early and modified Ward Leonard Control System-Advantages & limitations -Modern electric drives.

Practicals: Dismantling, study on components and assembly of epicyclic gear box.

TOTAL: 75 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

- **CO1** Understand the construction and working of various types of clutches
- **CO2** Determine the gear ratio for different vehicle applications
- **CO3** Describe the types and principle of hydrodynamic transmission
- CO4 Compare Hydrostatic and hydrodynamics drives
- **CO5** Identify the differences among various automatic transmissions and electric drive.

TEXTBOOKS:

- 1. Heinz Heisler, "Advanced Vehicle Technology",2nd Edition,2002, Butterworth-Heinemann
- 2. T. K. Garrett K. Newton W. Steeds," Motor Vehicle", 13th Edition, 2000, Butterworth-Heinemann

REFERENCES:

- 1. Crouse, W.H., Anglin, D.L., "Automotive Transmission and Power Trains construction", McGraw Hill, 1976.
- 2. Heldt, P.M., "Torque converters", Chilton Book Co., 1962.
- 3. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals", CRC PRESS Boca Raton London New York Washington, D.C.

CO-PO Mapping

<u> </u>							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	1	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

AU23503	AUTOMOTIVE ELECTRICAL AND	L	Т	Ρ	С
AU23303	ELECTRONICS SYSTEMS	3	0	2	4

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for

- 1. To understand the fundamentals of vehicle electrical systems and automotive batteries.
- 2. To explore the principles and functionalities of vehicle starting and charging systems, and understanding their integral roles within the vehicle's electrical system.
- 3. To acquire advanced knowledge of vehicle ignition, lighting, and auxiliary systems, exploring the technological developments, operational principles, and practical applications
- 4. To gain a comprehensive understanding of the integration and functionality of electronics, sensors, and actuators in modern vehicles
- 5. To familiarize with vehicle networking, emphasizing the mechanisms of data transfer, network topology, and the communication protocols essential for automotive electronics, to enhance understanding of interconnected vehicle systems.

UNIT - I INTRODUCTION AND AUTOMOTIVE BATTERIES 9+6

Introduction- Overview of vehicle electrical systems-Electrical Circuits-Electrical power supply in conventional vehicle- Dimensioning of wires- Circuit diagrams and symbols-Electromagnetic Compatibility and interference suppression. Batteries- Battery design – Method of operation – Lead acid battery construction –Battery ratings and testing-Maintenance- free batteries–Battery – Substitute, versions, special case. Battery cooling.

Practicals: Testing of Lead Acid Battery,

UNIT - II STARTING AND CHARGING SYSTEM 9+6

Alternators – Generation of electrical energy in vehicle - physical principles - Alternator and voltage regulations versions–power losses –characteristics curve- Alternator operation in the vehicle - Alternator circuitry. Starter Motors– Development and Starting requirements in the IC engines- starter motor design – Starter motor design variations– starter motor control and power circuits.

Practicals: Testing of Starter Motor – Continuity Test, Insulation Test, Testing of Alternator – Continuity Test, Insulation Test.

UNIT - III IGNITION, LIGHTING AND AUXILLARY SYSTEMS 9+6

Ignitions System- Ignition fundamentals - Electronic ignition -Programmed ignition-Distributor less ignition-Direct Ignition-Sparkplugs. Automotive lighting Technology– Technical demands– Development of lighting technology- Light sources– physical principles– Front and rear lighting system-Interior lighting system–Special purpose lamps– Adaptive Lighting system- Instrument clusters -Wiper and Washer systems- electric horns.

Practicals: Measurement of Vibration Using the Accelerometer in Induction Motor.

UNIT - IV AUTOMOTIVE ELECTRONICS AND SENSORS AND ACTUATORS

Automotive Electronics- overview and demands- Basic principles of semiconductor types and technology -Electronic Components- semiconductor components- Microcontrollers-Sensor- Signal Processing- Data Processing in the vehicle- Glossary for automotive microelectronics. Automotive Sensors–Basics–Sensors: Position, speed, Acceleration / Vibrational, Force /Torque, Flow meters, Gas/ Concentration, EGO, TPS, Knock, IAT, MAF Temperature- Measured Quantities, Measuring Principles and automotive applications. Automotive Actuators- Electromechanical actuators- Fluid-mechanical actuators- Electrical machines- Direct- current machines- Three-phase machines- Single-phase alternatingcurrent Machines-Duty-type ratings for electrical machines.

Practicals: Measurement of Displacement Using Linear variable displacement transducers.

UNIT - V VEHICLE NETWORKING

9+6

Data transfer between automotive Electronics system- Basic principles of networking-Network topology- Network organization- OSI reference model- Control mechanismscommunication protocols in embedded systems-Vehicle Communication Protocols–Crosssystem functions- Requirements for bus systems- Classification of bus systems-Applications in the vehicle- Coupling of networks-Examples of networked Vehicles- Bus system-CAN, LIN, FlexRay–MOST etc.

Practicals: Visualization of Engine Sensor Signals and Fault Diagnosis Using OBD Kit.

TOTAL: 75 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- **CO1** Identify and describe the components and operations of vehicle electrical systems and automotive batteries
- **CO2** Analyze and evaluate the principles, functionalities, and critical roles of starting and charging systems within the vehicle's electrical framework
- **CO3** Demonstrate understanding of the advanced concepts in vehicle ignition, lighting, and auxiliary systems
- **CO4** Develop skills to integrate and apply electronic components, sensors, and actuators in modern vehicles
- **CO5** Comprehend and apply the concepts of vehicle networking, including data transfer mechanisms, network topology, and communication protocols

TEXT BOOKS:

 Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th Edition, 2007, ISBNNo:978-3-658-01783-5

REFERENCES:

- 1. Barry Holembeak, "Automotive Electrical and Electronics", Delmar Publishers, Clifton Park, USA,2010
- 2. James D Halderman, "Automotive Electrical and Electronics", Prentice Hall, USA, 2013
- 3. Tom Denton, "Automotive Electrical and Electronics Systems," Third Edition,2004, SAE International.
- 4. William Ribbens, "Understanding Automotive Electronics and Engineering Perspective, 7th Edition ", Elsevier Butterworth-Heinemann Publishers, 2012.

CO-PO Mapping

COs							POs						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	-	3	3	3
2	3	3	3	3	3	2	2	1	2	1	-	3	3	3
3	3	3	3	3	3	2	2	1	2	1	-	3	3	3
4	3	3	3	3	3	2	2	1	2	1	-	3	3	3
5	3	3	3	3	3	2	2	1	2	1	-	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	-	3	3	3

AU23504 VEHICLE MAINTENANCE AND TESTING L T P C 3 0 2 4

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for

- 1. analyze the different concepts in vehicle maintenance.
- 2. diagnose and rectify the faults in engine and subsystems
- 3. test the transmission system for any failures.
- 4. test the steering brake and suspension system s for proper functioning.
- 5. diagnose and rectify the faults in electrical and electronic systems.

UNIT - I MAINTENANCE, WORKSHOP PRACTICES, SAFETY AND TOOLS 9+6

Need for Maintenance – importance, classification of maintenance work-basic problem diagnosis. Automotive service procedures – workshop – types - operations – workshop manual -Safety – Personnel, machines and equipment, vehicles, fire safety - First aid. Basic tools – special service tools – measuring instruments –Scheduled maintenance services – service intervals –On board diagnostics.

Practicals: Engine fault diagnosis using scan tool.

UNIT - II ENGINE AND SUBSYSTEM MAINTENANCE

Engine service- Dismantling of Engine components - Engine tuning - repair- working on the underside, front, top, ancillaries- Service of basic engine parts, cooling and lubricating system, fuel system, Intake and Exhaust system, electrical system - Electronic fuel injection and engine management service - fault diagnosis- servicing emission controls. **Practicals:** Testing and calibration of Fuel injection equipment.

9+6

UNIT - III TRANSMISSION AND DRIVELINE MAINTENANCE 9+6

Clutch- general checks, adjustment and service- Dismantling, identifying, checking and reassembling transmission, transaxle- road testing- Removing and replacing propeller shaft, servicing of universal joint and constant velocity joints- Rear axle service points- removing axle shaft and bearings- servicing differential assemblies- fault diagnosis. **Practicals:** Performance test on chassis dynamometer.

UNIT - IV STEERING, BRAKE, SUSPENSION, WHEEL MAINTENANCE 9+6

Inspection, Maintenance and Service of Hydraulic brake, Drum brake, Disc brake. Bleeding of brakes. Inspection, Maintenance and Service of Mc person strut, coil spring, leaf spring, shock absorbers. Dismantling and assembly procedures. Wheel alignment and balance, removing and fitting of tyres, tyre wear and tyre rotation. Inspection, Maintenance and Service of steering linkage, steering column, steering gear box service- Rack and pinion, Recirculating ball and Worm type and Power steering system.

Practicals: Wheel balancing and wheel alignment in four-wheelers, Testing of suspension and steering system.

UNIT - V AUTO ELECTRICAL, AIR CONDITIOING AND VEHICLE BODY MAINTENANCE 9+6

Maintenance of batteries, starting system, charging system and body electrical -Fault diagnosis using Scan tools. Maintenance of air conditioning parts like compressor, condenser, expansion valve, evaporator - Replacement of hoses- Leak detection- AC Charging- Fault Diagnosis Vehicle body repair like panel beating, tinkering, soldering, polishing, painting.

Practicals: Tinkering and painting of auto body parts.

TOTAL: 75 PERIODS

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- **CO1** apply the different concepts in vehicle maintenance.
- **CO2** diagnose and rectify the faults in engine and subsystems
- **CO3** test the transmission system for any failures.
- **CO4** test the steering brake and suspension systems for proper functioning.
- **CO5** diagnose and rectify the faults in electrical and electronic systems.

TEXT BOOKS:

- 1. Ed May, Automotive Mechanics Volume One, Mc Graw Hill Publications, 2014
- 2. Ed May, Automotive Mechanics Volume Two, Mc Graw Hill Publications, 2014

REFERENCES:

- 1. Bosch Automotive Handbook, Tenth Edition, 2018
- 2. Vehicle Service Manuals from different manufactures
- 3. William Crouse, Donald Anglin Automotive Mechanics
- 4. Tom Denton, Advanced Automotive Fault Diagnosis Automotive Technology: Vehicle Maintenance and Repair, Routledge,2012

CO-PO Mapping

CO 2							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	2	3	3	3	3	3	3
2	3	3	3	3	3	2	2	2	3	3	3	3	3	3
3	3	3	3	3	3	2	2	2	3	3	3	3	3	3
4	3	3	3	3	3	2	2	2	3	3	3	3	3	3
5	3	3	3	3	3	2	2	2	3	3	3	3	3	3
Avg	3	3	3	3	3	2	2	2	3	3	3	3	3	3

AU23U01	STANDARDS (AUTOMOBILE ENGINEERING)	L
AU23001	STANDARDS (AUTOWOBILE ENGINEERING)	1

MODULE I OVERVIEW OF STANDARDS

Basic concepts of standardization; Purpose of Standardization, marking and certification of articles and processes; Importance of standards to industry, policy makers, trade, sustainability and innovation. Objectives, roles and functions of BIS, Bureau of Indian Standards Act, ISO/IEC Directives; WTO Good Practices for Standardization. Important Indian and International Standards.

MODULE II AUTOMOTIVE STANDARDS AND REGULATIONS

Automotive standards-Uniform guidelines-automotive industry-list of automotive industry standards (AIS). Emissions, safety, quality and performance standards. Central motor vehicles rules 1989.Environmental Standards-Emission norms-India's Bharat Stage (BS) emission standards-European Emission Standards (Euro norms). The stringency of emission standards. Relationship between emissions and fuel economy. Vehicle Noise Pollution-Noise pollution standards in India. Safety standrds-AIS145.Speed alert system-over speeds-Driver and co-driver safety belt reminder-Manual override for central locking system-Driver Airbag. Child restraint system standards-India. Automobile electrical components-Reliability and durability, safety and wiring. Automotive industry standards-Indiards (AIS) for the automotive sector- Other requirements-The Indian Road Congress (IRC) Standard on Dimensions and Weights of Road Design Vehicles. SAE standards. World Forum for the harmonization of vehicle regulations (WP.29)

TOTAL: 15 PERIODS

т

0

Ρ

0

С

1

6

9

COURSE OUTCOMES

Upon completion of this course, the students will be able to

- **CO1** Apply the standards followed in most of the industries
- **CO2** Apply the standards specific for dimension, design, safety, Emission and other areas.

REFERENCES:

- 1. The Automotive Industry Standards (AIS) are issued by the Ministry of Road Transport and Highways (MoRTH), Government of India.
- 2. The Central Motor Vehicles Rules, 1989 (CMVR) were enacted by the Ministry of Road Transport and Highways, Government of India.
- 3. The Indian Roads Congress (IRC) Standard on Dimensions and Weights of Road Design Vehicles (IRC-3-1983)
- 4. Bharat stage emission standards.
- 5. European emission standards.
- 6. SAE standards.
- 7. World forum for the harmonization of vehicle regulations (WP.29)

CO-PO Mapping

<u> </u>		POs												SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	2	3	3	3	3	3	3
2	3	3	3	3	3	2	2	2	3	3	3	3	3	3
Avg	3	3	3	3	3	2	2	2	3	3	3	3	3	3
	1 – Slight 2 – Moderate 3 – Substantial													

AU23505	SUMMER INTERNSHIP	L	Т	Р	С
AU23505	SOMMER INTERNSHIP	0	0	4	2

COURSE OBJECTIVES:

To provide students, training in live industries so that they can know what is happening in various departments of industries.

- 1. The students have to undergo practical industrial training for four weeks in recognized industrial establishments during their vacation periods.
- 2. At the end of the training, they have to submit a report with following information:
 - a. Profile of the industry
 - b. Product range
 - c. Organization structure
 - d. Plant layout
 - e. Processes/Machines/Equipment/Devices
 - f. Personnel welfare schemes
 - g. Details of the training undergone
 - h. Projects undertaken during the training, if any
 - i. Learning points

The assessments will be based equally on the report in the prescribed format and viva-voce examination by a committee nominated by the Head of the Department.

TOTAL: 60 PERIODS

COURSE OUTCOMES

Students can able to perceive,

CO1 The student will be very familiar on the very first day or his/her entry industry so that he/she can easily settle well entry industry in industries.

CO-PO Mapping

CO 2		POs												SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Avg	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Semester-VII

41100704		L	Т	Р	С
AU23701	DESIGN OF VEHICLE COMPONENTS	3	0	2	4
	(Use of Design Data Book is permit BJECTIVES:	ted)			
	es of this course are				
	nderstand the various steps involved in the design	of auto	omotive	comp	onents
	now their knowledge in designing engine compone			1	
3. To co	omplete design exercise and arrive at important dir	nensio	ons of c	hassis	
	ponents.				
	arn the use of standard practices in design.				
	etermine the dimensions of front and rear axles				
UNIT - I	DESIGN OF CYLINDER, PISTON AND CONNE				9+6
	naterial for cylinder and piston, design of cylinder,	•	-		•
•	and piston assembly. Material for connecting ro		•		•
	Practicals: Design and modelling of piston assem	bly, De	esign ai	nd moo	lelling of
the connec					
UNIT - II	DESIGN OF CRANK SHAFT AND VALVES				9+6
	crank shaft, design of crank shaft under bending a				
	ves, tappets. Design of cam &camshaft. Design				
-	modelling of the crankshaft, Design and modelli	ng of	the inle	et and	exhaust
valves.					0.0
UNIT - III	DESIGN OF CLUTCHES AND GEARS				9+6
•	ngle plate clutch, multiplate clutch and cone clutch		-	•	• •
	esign of clutch components. Gear train calcula		•	•	
	of bearing loads and selection of bearings. Desi	gn oi	inree s	peed	and lour
UNIT - IV	oxes. Practicals: Design and modelling of clutch. DESIGN OF VEHICLE FRAME AND SUSPENS				9+6
-			f from 0	forne	
•	ds moments and stresses on frame members. De	•		•	•
	rcial vehicle- Determination of steering torque, - acticals: Design and modelling of frame for ATV	uesigi		ayes,	steering
UNIT - V	DESIGN OF FRONT AND REAR AXLE				9+6
		o full	floating		
• .	opeller shaft. Design of final drive gearing. Desig quarter floats rear shafts and rear axle housings.		-		•
	s at different sections of front axle. Practicals: Des	•			
	s at different sections of nont axie. I facticals. Dea	Ū		Ū	ERIODS
COURSE O	UTCOMES			. /JF	
	f the course, students will be able to				
CO1	Analyze the stress and strain imparted on autom	otive c	ompon	ents	
	Compute the design and find the dimension of th				te
CO2	Identify optimal design solutions to real-world pro			•	
CO3	industry standards.	DIEITIS	III COIN	pliance	; WILTI
	Demonstrate the design skill by creating new des	ian str	ategy	vith the	<i>.</i>
CO4	application of the knowledge.	.9.1 01	~.~y, '		
005	Interpret the modern system in vehicle and would	l help i	n deve	lopina	the
CO5	system with less impact to the environment.	1	-	. 3	
TEXTBOOK					
	a, Lorenzo Morello, "The Automotive Chassis Volu	ıme 1,	Compo	onents	
Desi	gn", Springer International Edition.2014				

2. Khurmi. R.S. & Gupta. J.K., "A text book of Machine Design", Eurasia Publishing House (Pvt) Ltd, 2001.

3. Stokes, "Manual gearbox design", Butterworth-Heinemann 1992

REFERENCES:

- 1. Design Data Hand Book", PSG College of Technology, 2013- Coimbatore.
- 2. Dean Averns, "Automobile Chassis Design", IllifeBookCo.,2001.
- 3. Kolchin- Demidov, "Design of Automotive Engines"-Mir Publishers (1984)
- 4. Lukin PG Gand Rodionov V, "Automobile Chassis Design and Calculations", Mir Publishers, Moscow, 1989.
- 5. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine component Design", 6thEdition, Wiley, 2017

CO-PO Mapping

CO 2	POs												PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	1	2	2	2	1	3	3	3	
2	3	3	3	3	3	2	1	2	2	2	1	3	3	3	
3	3	3	3	3	3	2	1	2	2	2	1	3	3	3	
4	3	3	3	3	3	2	1	2	2	2	1	3	3	3	
5	3	3	3	3	3	2	1	2	2	2	1	3	3	3	
Avg	3	3	3	3	3	2	1	2	2	2	1	3	3	3	

		L	Т	Р	С
AU23702	ELECTRIC AND HYBRID VEHICLES	3	0	2	4
	BJECTIVES:				
	arning objective of this course is to prepare the				
	eral aspects of Electric and Hybrid Vehicles (El		•	rchitect	ures,
	elling, sizing, sub-system design and hybrid vel	nicle col	ntrol.		
	rstand about vehicle dynamics, on the required energy storage devices,				
	t the suitable electric propulsion systems and				
	erstand of hybrid electric vehicles.				
UNIT - I	NEED FOR ALTERNATIVE SYSTEM				9+6
Need for hy	brid and electric vehicles – main components a	nd work	ing prin	ciples o	f a hybrid
•	vehicles, Different configurations of hybrid and		• •	•	•
study of die	sel, petrol, hybrid, fuel-cell and electric Vehicle	es. Adv	antages	s and Li	mitations
of hybrid an	d electric Vehicles. Case study on specification	n of elec	ctric and	d hybrid	vehicles.
Practicals:	Dismantling, study on components and assem	bly of e	lectric \	/ehicle	
UNIT - II	DESIGN CONSIDERATIONS FOR ELECTRI	C VEHI	CLES		9+6
Design requ	irement for electric vehicles- Range, maximu	m veloc	city, acc	eleratio	n, power
requirement,	mass of the vehicle. Various Resistance-T	ransmis	sion ef	ficiency	- Electric
	sis and Body Design, Electric Vehicle Recha	•••		fueling	Systems.
Practicals: (Calculate energy consumption and range of ele	ectric Ve	ehicle.		
UNIT - III	ENERGY STORAGE DEVICES AND SOURC	CES			9+6
Battery Para	meters Different types of batteries. Battery	Chem	istry, B	attery N	lodelling,
•	agement System, Thermal Management syst		•		
Characteristi	cs - Fuel cell types- Electrolytic reactions	of fue	el cell.	Cell C	hemistry.
Practicals: (Calculation for battery sizing.				r
UNIT - IV	MOTORS AND CONTROLLERS				9+6
	otors, Characteristic of DC motors, AC single	•			•
•	ched reluctance motors, BLDC motor, Motor				
-	ctoring, Regenerative Braking. Rectifiers,	Inverter	s, DC/	DC cc	onverters.
	Calculation for motor selection.				
UNIT - V	SUBSYTEMS OF HYBRID AND ELECTRIC	-	-		9+6
-	devices for Hybrid Vehicles - Operation modes			-	-
	nomy of hybrid Vehicles. Practicals: Electric	/ehicle	simulat	ion usin	g system
engineering	sonware.		TOTA		
	TCOMES		TOTA	AL: /5 F	PERIODS
	etion of this course, the students will be able to				
CO1	Understand working of different configurations		rid and	oloctric	vohiclos
001	Design and develop basic schemes of electric				
CO2	vehicles.			iybnu e	
CO3	Choose proper energy storage systems for E				
CO4	Choose a suitable drive scheme for developir depending on resources	ng an el	ectric h	ybrid ve	hicle
CO5	Understand basic operation of power-split development of power-split develo	vice and	d contro	l Strate	gies for
TEXTBOOK					
	es Larminie and John Lowry, "Electric Vehicle 1	echnol	ogy Exp	lained '	'John
Wiles	/ & Sons,2003				

- 2. Iqbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press,2003
- 3. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles", CRC Press,2005

REFERENCES:

- 1. Ron HodKinson, John Fenton, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication,2005
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005

CO-PO Mapping

<u> </u>	POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

		L	т	Р	С
AU23703	VEHICLE DYNAMICS	3	0	2	4
	BJECTIVES:	_		-	-
	arning objective of this course is to prepare the stu	dents f	or		
•	de fundamental knowledge of the vibration,				
	rt knowledge on tyres de basic concepts on suspension design and func	tion ric	le mor	امد	
	late the performance, longitudinal dynamics and c				oile
	de basic analysis on handling, cornering stability a				
UNIT - I	CONCEPT OF VIBRATION				9+6
Modelling a	and Simulation, Global and Vehicle Coordinate	Syste	m. Fu	ndame	entals of
	Definitions, Types, Free, Forced, Undamped and	•			
•	Formulation of Governing equation. Response A	•		•	
	DOF. Magnification factor, Transmissibility ratio				Vibration
	ibration measuring instruments, Torsional vibration	•	•		
	Simulation and analysis of Single and Multi-Degre	e of Fi	reedon	n Syste	
UNIT - II	TYRES	a faras			9+6
	stem, Construction and manufacturing of tires, tyr				•
•••	e structure, hydroplaning, wheel and rim. Rolling				•
-	ance. Tire slip – Longitudinal slip and slip angle t and longitudinal slip, Friction circle. Longitudinal		-		
	Tractive and cornering property of tire. Camber and				
• •	et surface. Ride property of tyres. Various test car				
	Simulation and analysis of Longitudinal and latera		•	•	
Formula Tire					ig magic
UNIT - III	VERTICAL DYNAMICS				9+6
Human resp	onse to vibration, Sources of Vibration. Suspensior	requir	ement	s – typ	es. State
Space Repr	esentation. MR & ER Dampers. Design and anal	ysis of	Passi	ve, Se	miactive
and Active	suspension using Quarter car, Bicycle Model, Ha	alf car	and fu	ll car	vibrating
model. Influe	ence of suspension stiffness, suspension damping	g, and	tire sti	ffness.	Control
	nsion optimization techniques. Air suspension s			•	•
	Simulation and analysis of Passive Suspension S	-	•		
	del. Simulation and analysis of Active Suspension	on Sys	tem C	ontrol	Strategy
	ok, LQR) using Quarter / Half / Full Car model.				
UNIT - IV	LONGITUDINAL DYNAMICS AND CONTROL	<u> </u>			9+6
•	c forces and moments. Forces acting on a vehicle -				
	ed by power plant. Equation of motion. Load distril				
	r. Calculation of maximum acceleration, tractive e vehicles. Power limited acceleration and tr				
	of CG location. Longitudinal load transfer during				
	vehicles resting on slope. Driveline dynamics.				•
•	f Vehicle performance. ABS, stability control, Tract	•		Driving	ioique.
	Simulation and analysis of Power requirement for				
UNIT - V	LATERAL DYNAMICS				9+6
-	cometry – Steady state handling characteristics.	Stead	ly stat	e resr	
•	ut – Yaw velocity gain, Lateral acceleration gair		•	•	
• .	andling characteristics. Transient response charac			•	•
-	vehicle on banked road, during turn. Effect of su				-
•	Roll center, Roll axis, effect of roll on vehicle dyna	•			•
control.					-

Practicals:	Simulation of double lane change maneuver, Mini-Project						
	TOTAL: 75 PERIODS						
COURSE O							
By the end	of this course, students will be able to						
CO1	Develop physical and mathematical models of a mechanical vibrating system.						
CO2	Indicate the forces and moment acting on tyres.						
CO3	Identify the suspension parameters that governs ride comfort.						
CO4	Evaluate the vehicle performance in longitudinal direction.						
CO5	Evaluate the lateral dynamics and control in an automobile.						
TEXTBOOK	(S:						
1. Sing	iresu S. Rao, "Mechanical Vibrations – SI Edition," Sixth Edition, Pearson,						
2018	3						
2. J.Y.	Wong, "Theory of Ground Vehicles", Fifth Edition, Wiley-Inter science, 2022						
3. Raje	sh Rajamani, "Vehicle Dynamics and Control," Second edition, Springer, 2012						
4. Reza	a N. Jazar, "Vehicle Dynamics: Theory and Application", Third edition,						
Sprii	nger, 2017.						
REFERENC	ES:						
1. Thor	nas D. Gillespie, "Fundamentals of Vehicle Dynamics", Revised Edition,						
	ety of Automotive Engineers Inc, 2021						
	n Karnopp, "Vehicle Dynamics, Stability, and Control", Second Edition, CRC						
	s, 2013						
	ael Blundell & Damian Harty, "The Multi body Systems Approach to Vehicle						
Dynamics", 2nd Edition, Butterworth - Heinemann,2014							
	s B Pacejka, "Tyre and Vehicle Dynamics," Second edition, Butterworth -						
	emann, 2006						
СО-РО Мар	oping						

COs	POs												PSOs	
COS	1	2	3	4	5	5 6 7 8 9					11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	З	З	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

		L	Т	Р	С
AU23704	IC ENGINE PROCESS MODELING	3	0	2	4
COURSE O	BJECTIVES:				
	arning objective of this course is to prepare the stu		or		
	ire knowledge on simulation of IC engine compone		-1: - 1 4 :		_
	erstand the principle behind the stoichiometric ratio erature.	and a	diadati	c flame	9
	lop a model on simulation of SI engine models.				
	erstand the concept of gas exchange process in SI	engine	e.		
	ire knowledge on simulation of CI engine	0			
UNIT - I	INTRODUCTION TO SIMULATION				9+6
Introduction	to Simulation, Advantages of computer simulation	on, Cla	assifica	ation o	f engine
	ke and exhaust flow models - Quasi steady flow		•	• •	•
	dels. Thermodynamic based in cylinder models.		•	•••	
•	lation. Practicals: Development of an algebraic	engine	e mode	el for a	a CI / SI
engine using	g any computer software.				
UNIT - II	STOICHIOMETRY AND ADIABATIC FLAME TE	MPER	ATUR	E	9+6
Reactive pr	ocesses, Heat of reaction, measurement of UF	RP, me	easure	ment	of HRP.
Introduction	- combustion equation for hydrocarbon fuels. C	Calcula	tion of	f minir	num air,
	and stoichiometric air required for combustie				•
	in C-H-N-O systems, constant volume adiabatic co				
	mbustion, calculation of adiabatic flame tempera		-		•
	icals: Study on engine modelling procedure in (CFD a	nd dev	/elopm	ent of a
sector mode	I of an IC engine.				
UNIT - III	SI ENGINE SIMULATION				9+6
•	mulation with air as working medium, deviation bet				•
•	e analysis - Temperature drop due to fuel vaporiz				
	and efficiency calculation, part-throttle operation,	•	•		•
-	er charged operation. SI Engines simulation wi	-	-		
	nass burnt fraction. Practicals: Modelling of In-cylir	nder cr	arge fi	ow of t	ne given
UNIT - IV	sector model. SI ENGINE SIMULATION WITH GAS EXCHANC		OCES	\$	9+6
	gas exchange process, Heat transfer process,				
	lopment, comparison of simulated values, valida				
	ormance calculations, pressure crank angle dia			•	
U	ciency, effect of speed on performance. Practica	•		•	-
	ftware-Simulation on engine combustion and flow			•	5 -
UNIT - V	CI ENGINE SIMULATION				9+6
	ad multizone models for diesel engine combustion.	Wiebe	's Mod	el Wh	
	Watson model for diesel combustion. Heat rele				
	gine model for Multi fuel Engines. Parametric st				
	e. Practicals: CFD modelling on Combustion and e				-
-	input conditions.			. /	5
			ΓΟΤΔΙ	: 75 P	ERIODS
COURSE O	UTCOMES				
At the end o	f the course, students will be able				
CO1	To remember the thermodynamic processes invo	lved in	SI eng	gine	
	combustion.				

CO2	To apply the principle behind the stoichiometric ratio, heat of reaction and adiabatic flame temperature calculations.
CO3	To develop and analyze the fuel air, progressive combustion engine cycles
CO4	To evaluate the actual engine model with gas exchange process.
CO5	To create the complete theoretical engine model for SI and CI Engines

TEXTBOOKS:

1. Ganesan.V. "Computer Simulation of spark ignition engine process", Universities Press (I) Ltd, Hyderbad, 1996.

REFERENCES:

- 1. Ashley Campbel, "Thermodynamic analysis of combustion engines", John Wiley & Sons, New York, 1986.
- 2. Benson.R.S., Whitehouse.N.D., "Internal Combustion Engines", Pergamon Press, oxford, 1979
- 3. John. B. Heywood, 'Internal Combustion Engines'", Tata McGraw Hill Co., New York, 1988.
- 4. Ramoss. A.L., "Modelling of Internal Combustion Engines Processes", McGraw Hill Publishing Co., 1992.

CO-PO Mapping

COs							POs						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	-	2	2	-	3	3	3
2	3	3	3	3	3	2	2	-	2	2	-	3	3	3
3	3	3	3	3	3	2	2	-	2	2	-	3	3	3
4	3	3	3	3	3	2	2	-	2	2	-	3	3	3
5	3	3	3	3	3	2	2	-	2	2	-	3	3	3
Avg	3	3	3	3	3	2	2	-	2	2	-	3	3	3

AU23U02	PERSPECTIVES OF SUSTAINABLE	L	Т	Ρ	С
AU23002	DEVELOPMENT IN AUTOMOBILE	2	0	2	3
MODULEI					6
•	istorical perspectives, Importance and need for su		-	•	•
•	y, impact and implications. United Nations Sustain	•		•	Goals
	nmit – Rio & outcome, Sustainability and developr	nent ir	dicator	S.	
MODULE II	ENVIRONMENTAL SUSTAINABILITY		_		6
renewable reso	e, Biodiversity loss, Pollution and waste manager ources, Water and energy conservation, Sustainab nternational policies, Environmental regulations an ysis	le agri	culture	and fo	restry.
MODULE III	SOCIAL & ECONOMIC SUSTAINABILITY				9
Equity and jus	tice, Community development, Smart cities and	sustair	nable ir	nfrastru	ucture,
Cultural heritag	ge and sustainability, Ethical considerations in sus	tainab	e deve	lopme	nt.
Triple bottom I	ine approach, Sustainable economic growth, Corp	oorate	social ı	respon	sibility
(CSR), Green	marketing and sustainable product design, Circ	ular e	conom	y and	waste
minimization, (Green accounting and sustainability reporting.				
MODULE IV	ENERGY EFFICIENCY AND ELECTRIC VEHC	LES			9
Energy efficie	ncy and emission reduction in vehicles. Elec	ctronica	ally co	ntrolle	d and
Turbocharged	IC engines. Automotive Aerodynamics- Vehicle b	ody o	ptimiza	tion. E	Electric
vehicles -batte	ry, fuel cell and solar electric vehicles.				
MODULE V	SUSTAINABILITY PRACTICES				30
Heat bala	nce analysis in internal combustion engine.				
Comparise	on of energy efficiency between naturally aspirated	andtu	irbocha	rged e	ngine.
-	on of emissions between mechanical and electron			-	-
Analysis c	of drag coefficient on different types of vehicles.	•			mes.
•	in ulay coefficient on unreferit types of vehicles.			Ū	mes.
				C	ines.
	nce analysis of fuel cell.	тс	TAL: 7	75 PEF	
COURSE OUT	nce analysis of fuel cell.	тс	TAL: 7	75 PEF	
COURSE OUT At the end of the	TCOMES	тс	TAL: 7	75 PEF	
At the end of the	nce analysis of fuel cell.				RIODS
	TCOMES The course, students will be able to	ability	princip		RIODS
At the end of the CO1	TCOMES The course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma	ability	princip	les, his	RIODS
At the end of the	TCOMES The course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation.	ability pment ajor en	princip vironm	les, his ental is	RIODS story, ssues,
At the end of the CO1	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and	ability opment ajor en d ethica	princip vironm al consi	les, his ental is deratio	RIODS story, ssues, ons in
At the end of the CO1	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik	ability opment ajor en d ethica	princip vironm al consi	les, his ental is deratio	RIODS story, ssues, ons in
At the end of the CO1	TCOMES The course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing main including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR	nability opment ajor en d ethica ce the t	princip vironm al consi riple bo	les, his ental is deratio ottom l	RIODS story, ssues, ons in ine
At the end of the CO1	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik and CSR practically apply sustainability principles in real-w	ability opment ajor en d ethica te the t	princip vironm al consi riple bo	les, his ental is deratio ottom l	RIODS story, ssues, ons in ine
At the end of th CO1 CO2 CO3	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik and CSR practically apply sustainability principles in real-v analyzing energy systems, emissions, and vehic	ability ppment ajor en I ethica te the t vorld p Ie desi	princip vironm al consi riple bc rojects, gn.	les, his ental is deration bttom l incluc	story, ssues, ons in ine
At the end of the CO1 CO2 CO3	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing main including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR practically apply sustainability principles in real-wanalyzing energy systems, emissions, and vehice possess practical skills in designing sustainable	ability ppment ajor en I ethica te the t vorld p Ie desi	princip vironm al consi riple bc rojects, gn.	les, his ental is deration bttom l incluc	story, ssues, ons in ine
At the end of the CO1 CO2 CO3 CO4 CO5	TCOMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik and CSR practically apply sustainability principles in real-w analyzing energy systems, emissions, and vehic possess practical skills in designing sustainable and energy-efficient technologies.	ability ppment ajor en I ethica te the t vorld p Ie desi	princip vironm al consi riple bc rojects, gn.	les, his ental is deration bttom l incluc	story, ssues, ons in ine
At the end of the CO1 CO2 CO3 CO4 CO5 REFERENCES	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik and CSR practically apply sustainability principles in real-v analyzing energy systems, emissions, and vehic possess practical skills in designing sustainable and energy-efficient technologies.	ability opment ajor en d ethica te the t vorld p le desi infrasti	princip vironm al consi riple bo rojects, gn. ucture,	les, his ental is deration ottom I incluc	story, ssues, ons in ine ling icts,
At the end of the CO1	COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing ma- including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts lik and CSR practically apply sustainability principles in real-v analyzing energy systems, emissions, and vehic possess practical skills in designing sustainable and energy-efficient technologies. D., & Shonnard, D. R. (2011). Sustainable engine	ability opment ajor en d ethica te the t vorld p le desi infrasti	princip vironm al consi riple bo rojects, gn. ucture,	les, his ental is deration ottom I incluc	story, ssues, ons in ine ling icts,
At the end of the CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Allen, and c	TCOMES The course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing main including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR practically apply sustainability principles in real-wand analyzing energy systems, emissions, and vehice possess practical skills in designing sustainable and energy-efficient technologies. D., & Shonnard, D. R. (2011). Sustainable engine ase studies. Prentice Hall.	ability opment ajor en I ethica te the t vorld p le desi infrasti eering:	princip vironm al consi riple bo rojects, gn. ucture,	les, his ental is deration bttom l incluc , produ	RIODS story, ssues, ons in ine ling licts, esign
At the end of th CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Allen, and c 2. Munic	COMES re course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing main including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR practically apply sustainability principles in real-w analyzing energy systems, emissions, and vehice possess practical skills in designing sustainable and energy-efficient technologies. D., & Shonnard, D. R. (2011). Sustainable engine ase studies. Prentice Hall. er, N. (2005). Introduction to sustainability (pp. 355	ability opment ajor en I ethica te the t vorld p le desi infrasti eering:	princip vironm al consi riple bo rojects, gn. ucture,	les, his ental is deration bttom l incluc , produ	story, ssues, ons in ine ling licts,
At the end of the CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Allen, and c 2. Munie Nether	 COMES ne course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing maincluding renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR practically apply sustainability principles in real-wanalyzing energy systems, emissions, and vehic possess practical skills in designing sustainable and energy-efficient technologies. S: D., & Shonnard, D. R. (2011). Sustainable engine ase studies. Prentice Hall. er, N. (2005). Introduction to sustainability (pp. 355 erlands: Springer. 	ability opment ajor en d ethica te the t vorld p le desi infrasti eering: 58-6). <i>A</i>	princip vironm al consi riple bo rojects, gn. Conce	les, his ental is deration bttom l incluc , produ	RIODS story, ssues, ons in ine ling licts, esign
At the end of the CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Allen, and c 2. Munie Nethe 3. Black	COMES re course, students will be able to have a comprehensive understanding of sustain and the role of engineering in sustainable develor identify and develop strategies for addressing main including renewable energy and conservation. understand the importance of equity, justice, and sustainable development, as well as concepts like and CSR practically apply sustainability principles in real-w analyzing energy systems, emissions, and vehice possess practical skills in designing sustainable and energy-efficient technologies. D., & Shonnard, D. R. (2011). Sustainable engine ase studies. Prentice Hall. er, N. (2005). Introduction to sustainability (pp. 355	ability ppment ajor en d ethica te the t vorld p le desi infrastr sering: 58-6). <i>A</i> The co	princip vironm al consi riple bo rojects, gn. ucture, Conce Amstero	les, his ental is deratio bttom I incluc , produ pts, de dam, T	story, ssues, ons in ine ling licts,

- 4. Clini, C., Musu, I., & Gullino, M. L. (2008). Sustainable development and environmental management. Published by Springer, PO Box, 17, 3300.
- 5. Bennett, M., James, P., & Klinkers, L. (Eds.). (2017). Sustainable measures: Evaluation and reporting of environmental and social performance. Routledge.
- 6. Seliger, G. (2012). Sustainable manufacturing for global value creation (pp. 3-8). Springer Berlin Heidelberg.
- 7. Stark, R., Seliger, G., & Bonvoisin, J. (2017). Sustainable manufacturing: Challenges, solutions and implementation perspectives. Springer Nature.
- 8. Davim, J. P. (Ed.). (2013). Sustainable manufacturing. John Wiley & Sons.
- 9. Ganesan. V, "Internal Combustion Engines", 4th Edition, McGraw Hill Publication 2012.
- Hucho. W.H. "Aerodynamic of Road Vehicles From Fluid Mechanics to Vehicle Engineering", Society of Automotive Engineers, U.S, Fourth edition, 1998.
- 11. James Larminie and John Lowry, "Electric Vehicle Technology Explained "John Wiley & Sons,2003

CO-PO Mapping

<u> </u>							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	3	3	3	2	2	2	3	3	3
2	3	3	3	3	3	3	3	3	2	2	2	3	3	3
3	3	3	3	3	3	3	3	3	2	2	2	3	3	3
4	3	3	3	3	3	3	3	3	2	2	2	3	3	3
5	3	3	3	3	3	3	3	3	2	2	2	3	3	3
Avg	3	3	3	3	3	3	3	3	2	2	2	3	3	3

PROFESSIONAL ELECTIVE COURSES VERTICALS-I: ADVANCED VEHICLE TECHNOLOGY

	SPECIAL PURPOSE VEHICLES	L	Т	Ρ	С
AU23C03	SFECIAL FORFOSE VEHICLES	3	0	0	3
The main le 1. Enh	DBJECTIVES: earning objective of this course is to prepare the students for ance the knowledge of the students about the various equ hmoving, applications.	ıipm	ent's	s use	ed in
2. Uno app	lerstand the construction and working of the vehicle for con lication scribe the working nature of farm equipment's based on the				n
4. Dise	criminate the various industrial vehicles based on the purpulate the knowledge on the functioning of military vehicle			auo	
UNIT - I	EARTH MOVING EQUIPMENTS				9
end loader	on layout, capacity and applications of dumpers, articulat s, backhoe loaders, bulldozers, scrappers, motor graders, s hydraulic shovels, bucket conveyors, surface miners– higl	skid-	stee	r loa	ders,
UNIT - II	CONSTRUCTIONAL EQUIPMENTS				9
Concrete I	on layout, capacity and applications of cranes–types, A Ready mixer, Trenchers, Asphalt Pavers, Road Reclaime glines, Drillers, Bore well machine.				
UNIT - III	FARM EQUIPMEMTS				9
bunchers, UNIT - IV Construction	on and functions- Paddy harvesting machines, Sugarcane Forest machines. INDUSTRIAL VEHICLES onal features, capacity and working of forklifts, Utility nan-lift chassis, scissor lift trucks, material handlers, r	veł	nicle	s, to	9 owing
sweepers				0, 0	
UNIT - V	MILITARY AND COMBAT VEHICLES				_
Shariai tar					9
vehicles, A	tures and constructional details of Main Battle tank, gun ca rmored vehicle – launched bridge, Amphibious bridging ve ation vehicles.			rans	-
vehicles, A	rmored vehicle – launched bridge, Amphibious bridging ve ation vehicles.	ehicl	e,		-
Communic	rmored vehicle – launched bridge, Amphibious bridging ve ation vehicles. TOI DUTCOMES	ehicl	e,		port
COURSE C	rmored vehicle – launched bridge, Amphibious bridging vention vehicles. TOT DUTCOMES Iletion of the course, the students will be able to	ehicl Γ <mark>ΑL</mark> :	e, : 45	PER	port
Communic Communic COURSE C Upon comp CO1	rmored vehicle – launched bridge, Amphibious bridging ver ation vehicles. TOT OUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the urpose vehicle	ehicl ΓΑL:	e, : 45 :ious	PER	port
Communic Communic COURSE C Upon comp CO1	rmored vehicle – launched bridge, Amphibious bridging vention vehicles. TOT DUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the	ehicl ΓΑL:	e, : 45 :ious	PER	port
COURSE C Upon comp CO1 C CO2 L CO3 H	rmored vehicle – launched bridge, Amphibious bridging ver ation vehicles. TOT OUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the urpose vehicle Inderstand the construction layout of earthmoving equipment lave the ability to apply the knowledge to design a new con onstruction application.	ehicl	e, : 45 :ious :. :. :.	PER spe	iport IODS
COURSE C Upon comp CO1 D CO2 U CO3 H CO4 V	rmored vehicle – launched bridge, Amphibious bridging ver ation vehicles. TOT OUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the urpose vehicle Inderstand the construction layout of earthmoving equipme lave the ability to apply the knowledge to design a new con onstruction application. Demonstrate their skill in developing modern techniques for ehicles	ehicl	e, : 45 : : : : : : : : : : : : : : : : : : :	PER spe	ing
COURSE C Upon comp CO1 C CO2 U CO3 F CO3 C CO4 V CO5 C	rmored vehicle – launched bridge, Amphibious bridging ver ation vehicles. TOT OUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the urpose vehicle Inderstand the construction layout of earthmoving equipment lave the ability to apply the knowledge to design a new con onstruction application. Demonstrate their skill in developing modern techniques for ehicles Distinguish the various military vehicles and infer their partic	ehicl	e, : 45 : : : : : : : : : : : : : : : : : : :	PER spe	ing
Vehicles, A Communic COURSE C Upon comp CO1 [CO2 [CO2 [CO3] CO3 [CO4] V CO5 [TEXTBOO 1. Abru Pub	rmored vehicle – launched bridge, Amphibious bridging ver ation vehicles. TOT OUTCOMES letion of the course, the students will be able to Demonstrate their understanding about the operation of the urpose vehicle Inderstand the construction layout of earthmoving equipment lave the ability to apply the knowledge to design a new con onstruction application. Demonstrate their skill in developing modern techniques for ehicles Distinguish the various military vehicles and infer their partic	ral: ral: ent's ncep r fut	e, : 45 : ious 5. ot for ure f r teo	PER spe	ing

REFERENCES:

- 1. Beleman and M. Moskovin, Farm tractors, MIR, Publishers Moscow.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Itd., London.
- 3. Kolchin, A., and V. Demidov, Design of Automotive Engines for Tractor, MIR Publishers, 1972.
- 4. Peurifoy R.L "Construction Planning, Equipment and Methods", Tata McGraw-Hill, New Delhi,2002.
- 5. Wong J "Terra mechanics and Off-Road Vehicle Engineering", Butterworth-Heinemann,2009.

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	2	2	2	1	2	2	2	1	3	3	2
2	3	2	2	2	2	2	1	2	2	2	1	3	3	2
3	3	2	2	2	2	2	1	2	2	2	1	3	3	2
4	3	2	2	2	2	2	1	2	2	2	1	3	3	2
5	3	2	2	2	2	2	1	2	2	2	1	3	3	2
Avg	3	2	2	2	2	2	1	2	2	2	1	3	3	2

41102004		L	Т	Ρ	С
AU23001	TWO AND THREE-WHEELER TECHNOLOGY	3	0	0	3
COURSE C The main le 1. Imp 2. Unc & e: 3. Gai 4. Rec whe 5. Inte UNIT - I Classificati	DBJECTIVES: earning objective of this course is to prepare the students to art the knowledge on two-wheeler design and stability aspect derstand the construction and working of power unit in two an expose knowledge on different ignition systems and electrical in knowledge on clutch and transmission system of two whee cognize various frames used in two wheelers and to gain knowledge eveler suspension & brake systems. rpret various three wheelers and its applications INTRODUCTION ions of different two wheelers based on usage - design con sion limitations – design requirements, gyroscopic effect-	ts d thr syste lers wled	ee-vers. ge o	vhee n two	ler o- 9 veight
	ree wheelers, stability problems. POWER UNITS, IGNITION SYSTEMS AND OTHER				9
Two stroke MPFI and	ELECTRICAL SYSTEMS e and four stroke engines. Conventional IC engines for 2 & GDI engines. Battery coil ignition, magneto ignition and ond other electrical systems.				, PFI,
UNIT - III	CLUTCHES AND TRANSMISSION				9
	and final drive – Type of Gear Boxes. Types of clutche echanism. CVT. Belt, chain and shaft drive. Freewheeling				
UNIT - IV	FRAMES, SUSPENSION, WHEELS, TYRES AND BRA	KE	S		9
stability. Fi	rames. Design of frames for fatigue strength, torsional st ront and rear forks. Springs for suspension, Dampers, cor nd tyres. Braking systems.				
UNIT - V	THREE WHEELERS				9
	naws, different types, Pick-Ups and delivery type vehicle, f on, wheel types, wheel mountings attachment, tyre types. TO	Brak	ke sy	ster	ns. IODS
	DUTCOMES				
	pletion of the course, the students will be able to Jnderstand and demonstrate the designing of two-wheeler	otol	sility		
	Distinguish various two-wheeler power unit functions and I		-		m o
CO3 [Demonstrate various design aspects of clutch and transmis wo and three wheelers	-			
CO4 [Distinguish the different two-wheelers frames and its sub s lifferent applications	yste	ms f	or	
CO5 b	Explain and distinguish the different three wheelers and its based on applications	sub	syst	tems	3
	KS: vard Abdo, Modern motor cycle technology by 3rd Edition, 20 ng, P.E., Motor cycle Engineering, Temple Press Book, Londo		992.		
2. Dhru Lea	CES: . Ramalingam, Two Wheelers, Scitech publications, Chen uv U. Panchal. 'Two and Three-wheeler technology" PHI P urning Limited, Delhi 2015. prcycle Basics Tech book by Haynes 2nd Edition, 2015 prcycle mechanics, By George Lear,1977				

5. The Essential Guide to Motorcycle Maintenance by Mark Zimmerman2016 CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	2	2	2	1	2	2	2	1	3	3	2
2	3	2	2	2	2	2	1	2	2	2	1	3	3	2
3	3	2	2	2	2	2	1	2	2	2	1	3	3	2
4	3	2	2	2	2	2	1	2	2	2	1	3	3	2
5	3	2	2	2	2	2	1	2	2	2	1	3	3	2
Avg	3	2	2	2	2	2	1	2	2	2	1	3	3	2

AU23002	ROAD VEHICLE AERODYNAMICS	L	Т	Ρ	С
		3	0	0	3
	OBJECTIVES:				
	earning objective of this course is to prepare the students to				
	derstand the forces & moments influencing drag				
	ess the techniques of detail and shape optimizations for ca		_		
veł	ess the techniques of detail and shape optimizations for co nicles				
	ess the techniques of detail and shape optimizations for m	otor	cycl	es	
	oose to experimental testing and instrumentation				
UNIT - I	SCOPE OF VEHICLE AERODYNAMICS		F (9
	vehicle aerodynamics. Properties of incompressible flui w phenomena related to vehicles. Causes and effects of a				
	ents. Impact of road load on vehicle motion. Performance				
	ion and fuel economy calculations. Strategies for low fuel of	-			
UNIT - II	AERODYNAMIC DRAG OF PASSENGER CARS				9
Bluff body	. Drag fractions and their local origins - forebody, windsh	nield	and	Аa	nd C
	of, rear end, plan view and side panels, underbody, w				
U .	front spoiler, rear spoiler. Strategies for aerodynamic dev		men	it — C	Detail
· · · · ·	on, Shape optimization, Facelift, Adaptation of add-on devi				•
UNIT - III	AERODYNAMIC DRAG OF COMMERCIAL VEHICLES		al		9
	etween tractive resistance, drag and fuel consumption. A s of commercial vehicles. Drag reduction on delivery vans, t				
	vices for drag reduction. Vehicle soiling types, causes, e				
measures	• • • • •				
UNIT - IV	MOTORCYCLE AERODYNAMICS				9
	ent of motorcycle aerodynamics. Riding dynamics and its				
-	nics. Methods of measurement in road tests. Rider influence		es -	ride	and
	senger. Clothing and helmets. Case studies on racing mod				•
UNIT - V	EXPERIMENTAL TESTING AND INSTRUMENTATION		<u> </u>	4	9
	el – Types and Principle. Limitations with reduced scale m t and Transducers – Wind tunnel balance, Hotwire anema				
	ducers. Flow visualization techniques – Smoke, wool tu				
	y. Introduction to computational fluid dynamics.	, .			
		TAL	45	PER	IODS
COURSE	DUTCOMES				
	pletion of the course, the students will be able to				
	comprehend the forces & moments influencing drag.				
	appraise the techniques of detail and shape optimizations f				
	nterpret the strategies of drag reduction in commercial veh	icles	S.		
	nvestigate the factors influencing drag on motorcycles.				
	expose to experimental testing and instrumentation.				
TEXTBOO					
Joł	n Pope, Jewel B. Barlow, William H. Rae "Low-speed winc n Wiley & Sons, Third edition, 1999				•
Ve	cho. W.H. – "Aerodynamic of Road Vehicles – From Fluid nicle Engineering", Society of Automotive Engineers, U.S,				
199	10.				

REFERENCES:

- 1. R.H. Barnard "Road vehicle aerodynamic design, An Introduction", Mechaero publications, Third edition, 2010
- T. Yomi Obidi "Theory and Applications of Aerodynamics for Ground Vehicles", SAE International, 2014.

CO-PO Mapping

COs						P	Os						PSO	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

AU23003	VEHICLE CONTROL SYSTEMS	L	Т	Ρ	С
A023003	VEHICLE CONTROL STSTEMS	3	0	0	3
The main lea 1. Com	BJECTIVES: arning objective of this course is to prepare the students for prehensively understand the basics of control systems used		uton	nobil	es
3. Intro	exposure to modeling and control of SI and CI engine syste duction to drive line components and detailed knowledge on ol of driveline systems		delin	g an	d
4. Over	view on cruise control design, headway and their related sta ent technologies	ability	/ cor	ntrol	using
5. Illust syste				· ·	
UNIT - I	INTRODUCTION TO VEHICLE CONTROL SYSTEM & SCHEMES				9
measured of of the varia conditioning Network-Sy control syst configuratio	d system design: - Trends, overview-Selection of control disturbance variables- Degree of freedom for vehicle con- bles in various automotive systems like engines, susper g etc. – Sensors, actuators and controller modules-Vehic stem Engineering V-diagram- Algorithm Development - em design- Transfer function & State Space Modeling- ns- Feedback, Inferential, Feed-Forward, Cascade c aptive control- PID tuning methods etc.	itrol- nsior le co Ste Veh	clas n, br omr eps i icle	ssific akin nunic in ve cont	ation g, air ation hicle roller
UNIT - II	MODELING AND CONTROL OF POWERTRAIN SYST	EMS	5		9
Variable va control- Tra UNIT - III	rview, Torque control, Fuel control, control of gas flow, EC lve actuation, variable compression, Signal interpretation nsmission control - Case Study: EGR and VGT Control a MODELING AND CONTROL OF DRIVERLINE SYSTE Motivation, behavior without appropriate control- Rigid	on a nd T MS	nd I unir	Feec ng.	lback 9
Driveline su Modeling c Characteris	rge and other additional driveline dynamics- clutch influer of neutral gear and open clutch, clutch modeling -To tics of Driveline control- Basic control of Driveline – Drivel Drive torque- Transmission torque control- Drive shaft tors	nce a orqu ine s	and Ie C spee	back Conv ed co	lash- erter-
UNIT - IV	CRUISE, HEADWAY AND STABLITY CONTROL				9
Adaptive cru loops, typical typical cont methods of	ptive PI & PID design, Anti-locking braking system (ABS) - uise control overview, requirements, dynamics of braked w al control cycles-Traction control system (TCS)- tasks, fu rol situation- Electronic Stability program(ESP)- require operation, ESP control loop- Linear and non-linear vel ciples – Four-wheel steering – Goals of 4WS Algorithms FAULT DIAGNOSIS, HUMAN FACTORS AND INTELL	/hee nctic eme hicle – Ac	I, AE ons, nts, mo tive	3S co struo task del-	ontrol cture, and VSC
	TRANSPORT SYSTEM		0.000		-
actuator fau	ity-Reasons, basic definition and concepts-Fault diagnos Ilt, triple sensor redundancy- Engineering of diagnosis s	syste	em -	- Ca	talyst
air intake-	a sensors, Throttle supervision, Evaporative system monit Human factors in vehicle automation- cross over mode c Theory- Driving simulators- percentage of road departur	el pr re. C	inci DBD	ole- -II.	Risk-
air intake- Homeostati	Human factors in vehicle automation- cross over mode c Theory- Driving simulators- percentage of road departur TO	el pr re. C	inci DBD	ole- -II.	
air intake- Homeostati COURSE O Upon compl	Human factors in vehicle automation- cross over mode c Theory- Driving simulators- percentage of road departur TO	el pr re. C TAL:	inci DBD	ole- -II.	Risk-

000	Ability to explain and apply modeling and different control schemes for
CO2	powertrain system
CO3	Understand the drive line components needs and apply different modeling and
005	control approaches in driveline systems design
CO4	Apply the cruise control design, headway and their related stability control to
	different vehicle systems
CO5	Illustrate the need for fault diagnosis, human factors and automated transport
	systems
	BOOKS:
	Galip Ulsoy, Automotive Control System, Cambridge University Press, 2012
2.	Lars Eriksson And Lars Nielsen, Modeling and Control of Engines and Drivelines,
	Wiley, 2014.
	RENCES:
1.	Uwe Kiencke and Lars Nielson, Automotive Control System, SAE Publications,
	2006
2.	Automotive Mechatronics- Automotive Networking, Driving Stability Systems,
	Electronics
	Bosch Automotive Handbook, Sixth Edition, 2004
4.	Benjamin C. Kuo and Farid Golnaraghi, Automatic Control System, John Wiley &
	Sons, Eight edition, 2003.
5.	Katsuhiko Ogata, System Dynamics, Prentice Hall International, Inc. Third
	Edition,1998
6.	Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson
	Prentice Hall,2008
CO-PC) Mapping

COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
2	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
3	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
4	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
5	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
Avg	3	3	3	3	3	2	2	1	2	1	-	3	3	3	

		L	Т	Ρ	С
AU2300	ADVANCE AUTOMOTIVE MATERIALS	3	0	0	3
COURSE	E OBJECTIVES:				
	n learning objective of this course is to prepare the students for				
	Knowledge on properties of engineering materials for automobile				
	Select suitable material selection process for automobile Structu		esig	n.	
	Select Materials for engine components and transmission system	ns.			
-	Select materials used for automotive structures.				
	Select electronic materials for automotive applications.				
UNIT - I					9
	of engineering materials - the evolution of engineering materials				
	s properties, displaying material properties using materials selec				
	ge in materials selection and design, Materials and the enviror	nmer	nt- se	elect	ion of
	s for automotive, aerospace, marine and defense applications.				-
UNIT - II					9
	n strategy, Attribute limits and Material indices, structura				
	re: Design process - types of design, design requirements,				
	s, Shape and Manufacturing processes - Materials proce				
	es and their influence on design, Process attributes, Sy			•	
	n, Process selection diagrams, Process cost, Energy consumption				
selection	costs, Availability, Recyclability, Environmental consideration	i. Co	ompu	lier	alded
UNIT - II		ΓFM	S		9
_					5
NUCTORICIC	s soloction for IC ongines: Piston niston rings, cylinder, Engine		-	onno	acting
	s selection for IC engines: Piston, piston rings, cylinder, Engine		-	onne	ecting
rod, Crar	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches.		-	onne	_
rod, Crar UNIT - IV	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches.VMATERIALS FOR AUTOMOTIVE STRUCTURES	e blo	ck, c		9
rod, Crar UNIT - IN Materials	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper	e blo r, sh	ck, c	abso	9 rbers
rod, Crar UNIT - IN Materials wind scr	MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp	e blo r, sh	ck, c	abso	9 rbers,
rod, Crar UNIT - IN Materials wind scr	Mk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes.	e blo r, sh ing a	ck, c ock a and	abso	9 rbers,
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V	Mk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. M MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. M ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC	e blo r, shi ing a ATI(ck, c ock a and DNS	abso antif	9 rbers, riction 9
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Steel	e blo r, shi ing a ATI(ck, c ock a and DNS	abso antif	9 rbers riction 9
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps.	e blo r, shi ing a ATIC ering	ock a ock a and DNS	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors,	Mk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee, anti-collision, Anti-fog, Head lamps.	e blo r, shi ing a ATIC ering	ock a ock a and DNS	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors,	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumpel reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES	e blo r, shi ing a ATIC ering	ock a ock a and DNS	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor	Mk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee, anti-collision, Anti-fog, Head lamps.	e blo r, shi ing a ATI(ering	ock a ock a and DNS	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile	e blo r, shi ing a ATIC ering TAL	ck, c ock a and DNS , Su : 45	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autom	e blo r, shi ing a ATIC ering TAL	ck, c ock a and DNS , Su : 45	abso antifi isper	9 rbers, riction 9
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components.	e blo r, shi ing a ATIC ering TAL	ock a and DNS , Su : 45	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autom	e blo r, shi ing a ATIC ering TAL	ock a and DNS , Su : 45	abso antifi isper	9 rbers, riction 9 nsion,
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3 CO3 CO4	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures.	e blo r, shi ing a ATIC ering TAL	ck, c ock a and DNS , Su ; 45 ve	abso antif Isper	9 rbers, riction 9 nsion, IODS
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a	e blo r, shi ing a ATIC ering TAL	ck, c ock a and DNS , Su ; 45 ve	abso antif Isper	9 rbers rictior 9 nsion, IODS
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3 CO3 CO4	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications.	e blo r, shi ing a ATIC ering TAL	ck, c ock a and DNS , Su ; 45 ve	abso antif Isper	9 rbers rictior 9 nsion, IODS
rod, Crar UNIT - IN Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications.	e blo r, shi ing a ATIC ering TAL motiv syste	ck, c ock a and DNS , Su ; 45 /e ems.	abso antifi Isper PER	9 rbers riction 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO4 CO4 CO5 REFERE 1. A S	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. SNCES: Anneed Elmarakbi," Advanced Composite Materials for Automotive Structural Integrity and Crash worthiness", John Wiley&SonsLtd,	e blo r, shi ing a ATIC ering TAL syste and e 2014	ck, c ock a and DNS , Su ; 45 ems. election pplic 4.	abso antif Isper PER	9 rbers rictior 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. A S 2. B	Ink shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO FOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. SNCES: Anned Elmarakbi," Advanced Composite Materials for Automotive Structural Integrity and Crash worthiness", John Wiley&SonsLtd, Brian Cantor, Patrick Grant, Colin Johnston, "Automotive Engine	e blo r, shi ing a ATIC ering TAL syste and e 2014 ering	ck, c ock a and DNS , Su : 45 /e ems. election pplic 4. g: Lig	abso antif Isper PER	9 rbers rictior 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO3 CO4 CO5 REFERE 1. A S 2. B F	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. SNCES: Anmed Elmarakbi," Advanced Composite Materials for Automotive Structural Integrity and Crash worthiness", John Wiley&SonsLtd, Brian Cantor, Patrick Grant, Colin Johnston, "Automotive Engine Functional, and Novel Materials", CRC Press, Taylor& FrancisGr	e blo r, shi ing a ATIC ering TAL syste and e 2014 ering roup	ck, c ock a and DNS , Su : 45 //e ems. //e election applic 4. g: Lig ,201	abso antifi isper PER ronic	9 rbers rictior 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. A S 2. B F 3. G	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO E OUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. ENCES: Ahmed Elmarakbi," Advanced Composite Materials for Automotive structures. Gran Cantor, Patrick Grant, Colin Johnston, "Automotive Engine functional, and Novel Materials", CRC Press, Taylor& FrancisGingeoffrey Davies, "Materials for Automobile Bodies", Butterworth-	ering and ering ve A 2014 roup Heir	ck, c ck, c ock a and DNS , Su : 45 zems. electro pplic 4. g: Lig ,201 hema	abso antifi isper PER PER ronic	9 rbers riction 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. A S 2. B F 3. G 4. H	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO FOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. ENCES: Anmed Elmarakbi," Advanced Composite Materials for Automotive Structural Integrity and Crash worthiness", John Wiley&SonsLtd, Brian Cantor, Patrick Grant, Colin Johnston, "Automotive Engine Functional, and Novel Materials", CRC Press, Taylor& FrancisGi Geoffrey Davies, "Materials for Automobile Bodies", Butterworth- diroshi Yamagata, "The Science and Technology of Materials in	e blo r, she ing a ATIC ering TAL and e ve A 2014 ering roup Heir	ck, c ck, c ock a and DNS , Su : 45 zems. electron alectron alectron g: Lig ,201 nema	abso antifi isper PER PER ronic	9 rbers riction 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon cor CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. A S 2. B F 3. G 4. H	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Steet, anti-collision, Anti-fog, Head lamps. TO EOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. Structural Integrity and Crash worthiness", John Wiley&SonsLtd, Brian Cantor, Patrick Grant, Colin Johnston, "Automotive Engine Functional, and Novel Materials", CRC Press, Taylor& FrancisGraphics, Cantor, Patrick Grant, Colin Johnston, "Automotive Engine Functional, and Novel Materials", CRC Press, Taylor& FrancisGraphics, "Materials for Automobile Bodies", Butterworth- Functional, and Novel Materials", CRC Press, Taylor& FrancisGraphics, "Materials for Automobile Bodies", Butterworth- Geoffrey Davies, "Materials fo	e blo r, shi ing a ATIC ering TAL and e ve A 2014 ering roup Heir Auto	ck, c ock a and DNS , Su : 45 /e ems. /e ems. /e election g: Lig ,2010 hema pomot	abso antifi isper PER PER ronic	9 rbers riction 9 nsion, IODS
rod, Crar UNIT - IV Materials wind scr fluids, Ty UNIT - V Materials Sensors, COURSE Upon con CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. A S 2. B F 3. G 4. H E 5. S	nk shaft, Fly wheels, Gear box, Gears, Splines, Clutches. V MATERIALS FOR AUTOMOTIVE STRUCTURES s selection for bearings, leaf springs, chassis & frames, Bumper reens, panels, brake shoes, Disc, wheels, differentials, damp yres and tubes. V ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLIC s for electronic devices meant for engine control, ABS, Stee , anti-collision, Anti-fog, Head lamps. TO FOUTCOMES mpletion of the course, the students will be able to Summarize properties of engineering materials for automobile Choose suitable material selection process for design of autor components. Select Materials for IC engine components and transmission s Recommend the materials used for automotive structures. Decide suitable electronic materials for automotive electrical a applications. ENCES: Anmed Elmarakbi," Advanced Composite Materials for Automotive Structural Integrity and Crash worthiness", John Wiley&SonsLtd, Brian Cantor, Patrick Grant, Colin Johnston, "Automotive Engine Functional, and Novel Materials", CRC Press, Taylor& FrancisGi Geoffrey Davies, "Materials for Automobile Bodies", Butterworth- diroshi Yamagata, "The Science and Technology of Materials in	e blo r, shi ing a ATIC ering TAL motiv syste and e ve A 2014 ering roup Heir Auto later	ck, c ock a and DNS , Su ; 45 //e ems. //e ems. //e ems. //e pplic 4. g: Lig ,2010 hema bmot	abso antifi isper PER PER ronic	9 rbers rictior 9 nsion 10DS

```
Heinemann, 1999.
```

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	-	1	1	1	2	1	-	3	3	3
2	3	3	2	2	-	1	1	1	2	1	-	3	3	3
3	3	3	2	2	2	1	1	1	2	1	-	3	3	3
4	3	3	2	2	-	1	1	1	2	1	-	3	3	3
5	3	3	2	2	-	1	1	1	2	1	-	3	3	3
Avg	3	3	2	2	2	1	1	1	2	1	-	3	3	3

1 - Slight, 2 - Moderate, 3 - Substantial

AU23005	AUTOMOTIVE SAFETY	L	Т	Ρ	С
		3	0	0	3
	OBJECTIVES:				
	earning objective of this course is				
	introduce vehicle structural crashworthiness and crash testing	3			
	introduce pedestrian safety get the knowled in the vehicle to avoid	tha	oroo	hon	d
	detect the obstacles around the vehicle.	the	cias	n an	u
	understand the fundamentals of sensor data fusion as it relate	as tr		20	
	Understand the concept of the connected vehicle and its role			ιο.	
	AS and automated vehicles.				
UNIT - I	CONCEPTS OF AUTOMOTIVE SAFETY				9
Automotive	safety: Introduction and Types. Active safety: driving safety,	con	ditio	nal s	afety,
	ity safety, operating safety. Passive safety: Design of body for				
crumble zo	one, Safety Cage. Optimum crash pulse, deceleration on imp	act	with	stati	onary
and movab	ble obstacles. Design for Crashworthiness. NCAP.				
UNIT - II	PASSIVE SAFETY EQUIPMENTS AND CONVENIENCE				9
	Seat belt tightener system and importance, collapsible steerin				
	tivation. Designing aspects of automotive bumpers and mate				•
•	nd mirror adjustment, central locking system, Tire pressure c	ontr	ol sy	stem	n, rain
	tem, Automated wiper system.				-
UNIT - III	ACTIVE SAFETY		.,		9
	raking system, Stability Control. Adaptive cruise control,				
	ollision warning, avoidance system, Blind Spot Detection syste	m, L	rivei	aler	tness
	System. ADAS.				•
UNIT - IV	VEHICLE INTEGRATION AND NAVIGATION SYSTEM	V - I-			9
	ut sensors and looking in sensors, Intelligent vision system,				
UNIT - V	obal Positioning System. Vehicle Navigation System. Road N	eiwi	JIK. V	ZV,	
-	Is of Driving Automation, Level 0 – No Driving Automation				9 Drivor
	e, Level 2 – Partial Driving Automation, Level 3 – Conditional D				
	High Driving Automation, Level 5 – Full Driving Automation.	, , , , , , , , , , , , , , , , , , , ,	iy At		alion,
		ΓΔΙ	45	PFR	IODS
COURSE	OUTCOMES				1000
	pletion of the course, the students will be able to				
1	Know about the concept of crumble zone and vehicle structura	al cra	ashw	/orth	iness
(.())	and crash testing				
	Know the various types of Occupant safety system				
	Know about Active Safety in the vehicle and avoid crash and t	unc	ion d	of AD	DAS.
	Jnderstand the fundamentals of sensor and to detect the obsi				
	vehicle and the concept of the connected vehicle.				
	Jnderstand SAE Levels of Driving Automation.				
TEXTBOO	KS:				
	bo Vlacic, Michel Parent, Fumio Harashima – "Intelligent Ve	hicle	Тес	hno	ogies
	eory and Applications" -Butterworth-Heinemann, 2001				0
2. J.N	Aarek, HP. Trah, Y. Suzuki, I. Yokomori - "Sensors for Autor	notiv	ve Ap	plica	ations
	/ILEY-VCH Verlag GmbH & Co. 2003				
	bert Bosch GmbH - "Safety, Comfort and Convenience Systematics and Convenience Systema	stem	IS"- \	Wiley	/; 3rd
	tion,2007				
REFEREN					
1. Bos	sch, "Automotive Hand Book", 6th edition, SAE, 2004. Powloski - "Vehicle Body Engineering" - Business books limite				
0 I F				~ ^	

- 3. Ronald. K. Jurgen "Automotive Electronics Handbook" Second edition- McGraw-Hill Inc., - 1999.
- 4. ARAI Safety standards

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	-	3	3	3
2	3	3	3	3	3	2	2	1	2	1	-	3	3	3
3	3	3	3	3	3	2	2	1	2	1	-	3	3	3
4	3	3	3	3	3	2	2	1	2	1	-	3	3	3
5	3	3	3	3	3	2	2	1	2	1	-	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	-	3	3	3

VERTICALS-II: ADVANCED ENGINE TECHNOLOGY

AU23006	ENGINE MANAGEMENT SYSTEMS	L	Т	Ρ	С
		3	0	0	3
The main I 1. Ana	OBJECTIVES: earning objective of this course is to prepare the students for alyze the need and role of components used in an eng stem.	gine	mai	nage	ment
2. Apj 3. Cat 4. Des	ply the function of various sensors and actuators in an eng tegorize the different available ignition system. sign of injection system for SI and CI engines.				
5. Dis UNIT - I	tinguish various engine control algorithm used during engi FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS	ne o	pera	ation.	9
Component strategies Fuzzy log mirrors/ant	nts for electronic engine management system, open and c PID control, Look up tables, introduction to modern con- tic and adaptive control. Switches, active resistors, Tra- tic plifiers, Voltage and current references, Comparator, Mo and D/A converters.	trol : ansis	strat stors	egie , Cι	ontrol s like irrent
UNIT - II	SENSOR AND ACTUATORS				9
flow, temp	principles, construction and location of sensors to measur perature, pressure, lambda, throttle position, knock, etc. W on and location of actuators viz. Solenoid, relay, stepper s.	Vork	ing p	orinc	iples,
UNIT - III	SI ENGINE MANAGEMENT				9
L, LH, M Contactles	pes and working of SI engine management systems (K, K lotronic. GDI. Development of ignition system – Tra ss, Distributor less, CDI, Ignition Map, Knock control. Flowch on and ignition control. Introduction to LASER Ignition syst	ansis harts	stor	ass	sted,
UNIT -	SI ENGINE MANAGEMENT				9
engines. I	tion system parameters affecting combustion, noise and Electronically controlled Unit Injection system. Common /orking of components like fuel injector, fuel pump, rail pre	rail	fuel	inje	ction
UNIT - V	DIGITAL ENGINE CONTROL SYSTEM				9
Integrated	gorithm for different operating modes of engine. Pollution engine control system, Electromagnetic compatibility – s – Electronic dash board instruments – On-board diagnos	EMI is sy	Su /ster	ppre n.	ssion
		TAL	: 45	PER	IODS
	OUTCOMES				
CO1	pletion of the course, the students will be able to Differentiate between the mechanical and electronic engine m working.	ana	gem	ent	
	Apply the function, construction and operation of various sens	ors	and	actua	ators.
	Categorize different ignition and injection systems.				
	Design different injection systems.				
	Apply various engine control algorithm used during engine op	erati	on.		
TEXTBOO 1. Bos 2. Wil		ngine	erin		

REFERENCES:

- 1. Allan W. M. Bonnick, "Automotive Computer Controlled Systems", Butterworth-Heinemann, 2001.
- 2. Eric Chowanietz, "Automobile Electronics," SAE, 1995.
- 3. Diesel Engine Management by Robert Bosch, SAE Publications, 3rd Edition, 2004.
- 4. Tom Denton, "Advanced Automotive Fault Diagnosis," Second edition, 2006

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

AU23007	ALTERNATIVE AND ADVANCED FUELS FOR IC	L	T	P	C
	ENGINES	3	0	0	3
1. To a	BJECTIVES: acquire complete knowledge on availability of possible b erties to use as fuel in CI and SI engines.	oiofue	els a	and	their
2. To a engir	pply the knowledge on the possible way of using alcoholenes.	s as	a fu	iel II	N IC
3. To a	nalyses the challenges and difficulties in using vegetable oil n internal combustion engines.	as a	an al	terna	ative
fuels					
5. To c engir					stion
UNIT - I	ALTERNATIVE FUELS, PROPERTIES AND TESTING MI OF FUEL				9
	Iternative fuels. World and Indian energy scenario on technologies for biofuels for internal combustion er , digestion.				
UNIT - II	ALCOHOLS AS FUELS				9
Methods of ignition ar	a fuels. Production methods of alcohols. Properties of using alcohols in CI and SI engines. Blending, dual fuel ad oxygenated additives. Performance emission ics in CI and SI engines. Recent Trends in Alcohol engin	oper and	atio cc	n, su ombi	urface ustion
UNIT - III	VEGETABLE OILS AS FUELS		,,,,,,	logic	<u>9</u>
of Vegetabl Characteris	ils in engines – Blending, preheating Transesterification are Oils-Performance in engines – Performance, Emissior tics in diesel engines. Role of Nano fluids, additives and ance improvement of vegetable oils as fuel.	n and	d Co	mbu	ustion
UNIT - IV	HYDROGEN AS ENGINE FUEL				9
associated SI and CI	methods of hydrogen. Combustive properties of hydrogen as fuel and solutions. Different methods of engines. Performance, emission and combustion and torage - safety aspects of hydrogen. Recent trends in Hydrogen.	usin alysi:	g hy s in	drog eng	gen in gines.
UNIT - V	BIOGAS, LPG AND NATURAL GAS AS FUELS	areg		-ign	9
Production scrubbing in	methods of Biogas, Natural gas and LPG. Properties stud n Biogas., Modification required to use in SI and CI Engi on characteristics of Biogas, NG and LPG in SI and CI en	nes-	Per		d H₂S
		TAL:	45	PER	IODS
COURSE O	etion of the course, the students will be able to				
CO1	Acquire complete knowledge on availability of possible alternative their properties to use as fuel in CI and SI engines.				
CO2	Apply the knowledge on the possible way of using alcohols engines.				
CO3	Analyze the challenges and difficulties in using vegetable of fuel in internal combustion engines.				
CO4	Evaluate the uses of hydrogen as fuel in IC engines as an fuels.				fossil
CO5	Create new and novel technologies to use alternative fuels combustion engines.	in in	tern	al	

TEXTBOOKS:

- 1. Donald Klass, Biomass for Renewable Energy, Fuels, and Chemicals, 1998, Academic Press, ISBN: 978-0-12-410950-6.
- 2. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.

REFERENCES:

- 1. Ayhan Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer- Verlag London Limited 2008, ISBN-13: 9781846289941
- 2. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, The Biodiesel Handbook, AOCS Press Champaign, Illinois 2005.
- 3. Science direct Journals (Biomass & Bio energy, Fuels, Energy, Energy conversion Management, Hydrogen Energy, etc.) on biofuels.
- 4. Technical papers.

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	3	2	-	2	-	3	2	2	3	1	2
2	3	3	2	3	2	-	2	-	3	2	2	3	1	2
3	3	3	2	3	2	-	2	-	3	2	2	3	1	2
4	3	3	2	3	2	-	2	-	3	2	2	3	1	2
5	3	3	2	3	2	-	2	-	3	2	2	3	1	2
Avg	3	3	2	3	2	-	2	-	3	2	2	3	1	2

AU23008	ADVANCED THEORY OF ICENGINES	L	Τ	Ρ	C
	BJECTIVES:	3	0	0	3
The objection 1. To in 2. To co 3. To co	ve of this course is to make the students mpart knowledge over entire combustion theory of internal co lescribe and summarize the cycles of an internal combustion acquire complete knowledge in engine modelling and combus ternal combustion engines.	eng	ine		•
	expose knowledge in non- conventional engines and their ope	erati	on in	de	
UNIT - I	COMBUSTION OF FUELS				9
Stoichiome Chemical e engine com	composition and molecular structure of hydrocarbon for ry of hydrocarbon fuels – Chemical energy and heat of reac quilibrium and adiabatic flame temperature calculation. The bustion–Flame velocity and area of flame front. Fuel spray , depth of penetration and atomization – Problems on chemic	ction eory y ch	calc of arac	ulati SI a teris	ons – nd Cl tics –
UNIT - II	ENGINE CYCLE ANALYSIS				9
engines. Pa	el air cycle and actual cycle analysis. Progressive combus arametric studies on work output, efficiency and other engi n engine cycle.				
UNIT - III	ADVANCED CONCEPTS IN IC ENGINES				9
Engine. Rea	Low Temperature Combustion. Homogeneous Charge Con activity Controlled Compression Ignition Engine. Premixed Ch ine. Recent Developments – Hydrogen applications in IC en	arge	e Coi		
UNIT - IV	NON-CONVENTIONAL IC ENGINES				9
and its use for multi fu	L.H.R. engine and its recent developments. Variable compre- in engine research. Wankel rotary combustion engine. Dual f el usage in CI engines -performance studies on dual fuel e atified charge and lean burn engines. Locomotive and mar	uel e engin	engir ie. F	ne co ree	oncept piston
UNIT - V	COMBUSTION ANALYSIS IN IC ENGINES				9
in SI and Cl rate and Wi	ic studies of combustion processes – Analysis of Pressure cra engines. Knock study for Pressure crank angle histories. App ebe's law analysis for combustion. Calculation of Ignition dela	bare	nt he		grams
	Hotwire and laser Doppler anemometry and velocimetry for flo C engines. Study on air flow characteristics	ow a			elease ustion
	C engines. Study on air flow characteristics		nd co	omb	elease
analysis in	C engines. Study on air flow characteristics		nd co	omb	elease ustion ustion
analysis in COURSE C Upon comp	C engines. Study on air flow characteristics TO UTCOMES letion of the course, the students will be able to	TAL	nd co	omb	elease ustion ustion
analysis in COURSE C Upon comp CO1 II	C engines. Study on air flow characteristics TO OUTCOMES letion of the course, the students will be able to lustrate the knowledge over the theory of IC engine combusti	TAL	nd co : 45	omb PER	elease ustion ustion
analysis in COURSE C Upon comp CO1 II CO2 A	C engines. Study on air flow characteristics TO UTCOMES letion of the course, the students will be able to	TAL	nd co : 45	omb PER	elease ustion ustion
analysis in COURSE C Upon comp CO1 II CO2 A E CO3 C	C engines. Study on air flow characteristics TO OUTCOMES letion of the course, the students will be able to ustrate the knowledge over the theory of IC engine combusti nalyze and interpret the knowledge over the cycles and com	TAL ion. bust	nd co : 45 ion c	PER	IC
analysis in COURSE C Upon comp CO1 II CO2 A E CO3 C	C engines. Study on air flow characteristics TOT OUTCOMES letion of the course, the students will be able to ustrate the knowledge over the theory of IC engine combusti nalyze and interpret the knowledge over the cycles and com ngine. emonstrate engine modelling and combustion analysis of inter-	TAL ion. bust erna	nd co : 45 ion c	PER	IC Stion
analysis in COURSE C Upon comp CO1 II CO2 A E CO3 C e CO4 U	C engines. Study on air flow characteristics TO OUTCOMES letion of the course, the students will be able to lustrate the knowledge over the theory of IC engine combusti nalyze and interpret the knowledge over the cycles and com ngine. emonstrate engine modelling and combustion analysis of inter- ngines.	FAL ion. bust erna	nd co : 45 ion c Il cor	personal per	IC stion
analysis in COURSE C Upon courp CO1 II CO2 A CO3 C e CO4 L CO5 A TEXTBOOI 1. John	C engines. Study on air flow characteristics TO TO TO TO TO TO TO TO TO TO	TAL ion. bust erna heir nbus	ion c ion c ion c	per	IODS

3. Ramalingam. K. K., Internal combustion engines, Scitech publications, Chennai, 2003.

REFERENCES:

1. Ganesan. V. "Computer Simulation of spark ignition engine process", Universities Press (I) Ltd, Hyderbad,1996.

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	1	2	1	3	3	2	1	1	-	2	3	3
2	3	2	1	2	1	3	3	2	1	1	-	2	3	3
3	3	2	1	2	1	3	3	2	1	1	-	2	3	3
4	3	2	1	2	1	3	3	2	1	1	-	2	3	3
5	3	2	1	2	1	3	3	2	1	1	-	2	3	3
Avg	3	2	1	2	1	3	3	2	1	1	-	2	3	3

AU23009	COMBUSTION THERMODYNAMICS AND HEAT	L	Т	Ρ	С
	TRANSFER	3	0	0	3
1. To re 2. To ic 3. To a 4. To a engin	BJECTIVES: Example the principle of combustion in thermodynamics. Identify the kinetics behind the chemical reaction of combustic nalyse the behaviour of the flames inside a combustion chan nalyse the behaviour of conduction, convection and radiation nes. valuate the in-cylinder pressure of the engine.	nber.			n IC
UNIT - I	THERMODYNAMICS OF COMBUSTION				9
Thermodyna spray forma UNIT - II Fundamenta	and diffusion combustion process in IC engines. First and amics applied to combustion- combustion Stoichiometry- che tion and droplet combustion. CHEMICAL KINETICS OF COMBUSTION als of combustion kinetics, rate of reaction, equation of Ar	emic	al eq	uilibr	ium, 9
••	mical thermodynamic model for Normal Combustion.				
stabilization	FLAMES emixed – flame speed correlations- quenching, flammability, , laminar diffusion flames, turbulent premixed flames - Reynol d their significance.				
UNIT - IV	HEAT TRANSFER IN IC ENGINES				9
-	t transfer and heat Balance. Measurement of Instantaneous r modelling. Heat transfer coefficients, radiative heat transfe		tran	sfer	rate.
UNIT - V	EXPERIMENTS IN IC ENGINES				9
	essure measurement. Rate of heat release calculation – here mometry and velocimetry for flow and combustion analysis in				aser
			45 P		DDS
COURSE O Upon compl CO1 CO2 CO3	UTCOMES: etion of the course, the students will be able to Remember the principle of combustion in thermodynamics. Identify the kinetics behind the chemical reaction of combus Analyse the behavior of the flames inside a combustion cha			els.	
CO4	Analyse the behavior of conduction, convection and radiation IC engines.			ansfe	ər in
CO5	Evaluate the in-cylinder pressure of the engine.				
York REFERENC 1. Ashl com	 B. Heywood, 'Internal Combustion Engines'", Tata McGi , 1988. 	ngine	", Jo	hn t	book
Publ 3. Taylo Penr 4. V. G	ications, London, 1985. Dr.E.F."The Internal Combustion Engines ", International Insylvania, 1982. Ganesan, 'Internal combustion Engines', Tata McGraw Hill rint, 2005.	Te	xt Bo	ook	Co.,

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	3	2	-	2	-	3	2	2	3	1	2
2	3	3	2	3	2	-	2	-	3	2	2	3	1	2
3	3	3	2	3	2	-	2	-	3	2	2	3	1	2
4	3	3	2	3	2	-	2	-	3	2	2	3	1	2
5	3	3	2	3	2	-	2	-	3	2	2	3	1	2
Avg	3	3	2	3	2	-	2	-	3	2	2	3	1	2

1 – Slight, 2	- Moderate,	3 – Substantial
---------------	-------------	-----------------

AU23010	ENGINE COMPUTATIONAL FLUID	NE COMPUTATIONAL FLUID							
	DYNAMICS	3	0	0	3				
	DBJECTIVES:								
	e aims to introduce the numerical modelling in t			,					
	ntroduce the importance of computational fluid inderstand the need of gas exchange process	-	-	line proc	ess.				
	develop computational model in air fuel mixture								
	acquire knowledge on combustion thermochem								
	create different emission models for IC engines								
UNIT - I	INTRODUCTION TO CFD				9				
	eat Transfer, Fluid flow – Mathematical descrip								
	tion of mass, momentum, energy and chemical								
	equations – Initial and Boundary Conditions –								
	ence methods – Taylor's Series - Uniform ar d Independence Test.	ia non-u	niiorm G	snas, inc	imerical				
UNIT - II	DIFFUSION PROCESSES: FINITE VOLUME	METHO	חר		9				
	e-dimensional diffusion, Two- and three-dim			state o	-				
problems,	Discretisation of unsteady diffusion problems schemes, Stability of schemes.								
UNIT - III	FLOW MODELLING				9				
Introduction	n of flow in S.I. Engines and C.I. engines simula	ation with	n air as v	vorking n	nedium,				
	nge processes, Wave Propagation in Compr								
	d Diffusers, wall interaction theory, Air motion.				1				
UNIT - IV	COMBUSTION AND FUEL				9				
mechanism premixed fla	rning, Chemical Kinetics- Elementary reac is, Flame types, Conservation Equations for ames, diffusion flames. Turbulent flames -Struc	reacting ture of tu	flows, L rbulent p	aminar f premixed	iames - flames,				
mechanism premixed fla	s, Flame types, Conservation Equations for	reacting ture of tu	flows, L rbulent p	aminar f premixed	iames - flames,				
mechanism premixed fla Turbulent r models. UNIT - V	es, Flame types, Conservation Equations for a mes, diffusion flames. Turbulent flames -Struct on premixed flames; Burning of solids, Simula EMISSION MODELLING	reacting ture of tu ations us	flows, L Irbulent p sing diffe	aminar f premixed rent com	ilames - I flames, Inbustion				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl	is, Flame types, Conservation Equations for a ames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation	reacting ture of tu ations us gy, Coel eactions	flows, L irbulent p sing diffe ficients f in SI ar	aminar f premixed rent com or reaction or reaction	flames - flames, hbustion 9 ons and igines -				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device	is, Flame types, Conservation Equations for ames, diffusion flames. Turbulent flames -Struc- ion premixed flames; Burning of solids, Simula EMISSION MODELLING of equilibrium composition. Enthalpy and Ener- ame temperature, Modelling of CO, HC, NO r ling -Hiroyasu soot model, Zeldovich NOx model	reacting ture of tu ations us gy, Coel eactions	flows, L irbulent p sing diffe ficients f in SI ar lelling of	aminar f premixed rent com or reaction or reaction	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device	s, Flame types, Conservation Equations for ames, diffusion flames. Turbulent flames -Struc- ion premixed flames; Burning of solids, Simula EMISSION MODELLING of equilibrium composition. Enthalpy and Ener ame temperature, Modelling of CO, HC, NO r lling -Hiroyasu soot model, Zeldovich NOx mod	reacting ture of tu ations us gy, Coef eactions del, Mod	flows, L rbulent p sing diffe ficients f in SI ar lelling of TOTA	aminar f premixed rent com or reaction or reaction of CI En After Tre	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device	es, Flame types, Conservation Equations for ames, diffusion flames. Turbulent flames -Struc- ion premixed flames; Burning of solids, Simula EMISSION MODELLING of equilibrium composition. Enthalpy and Ener ame temperature, Modelling of CO, HC, NO r ling -Hiroyasu soot model, Zeldovich NOx model DUTCOMES: of ul completion of this course the students will b	reacting ture of tu ations us gy, Coef eactions del, Moc	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA	aminar f premixed rent com or reaction or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device	s, Flame types, Conservation Equations for ames, diffusion flames. Turbulent flames -Struc- ion premixed flames; Burning of solids, Simula EMISSION MODELLING of equilibrium composition. Enthalpy and Ener- ame temperature, Modelling of CO, HC, NO r ling -Hiroyasu soot model, Zeldovich NOx model DUTCOMES: <u>aful completion of this course the students will k</u> Understand the governing equations and bou	reacting ture of tu ations us gy, Coef eactions del, Moc	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA	aminar f premixed rent com or reaction or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fla Soot Mode Device COURSE C On success CO1	 Flame types, Conservation Equations for Lames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation equilibrium composition. Enthalpy and Energame temperature, Modelling of CO, HC, NO rolling -Hiroyasu soot model, Zeldovich NOx model DUTCOMES: Stul completion of this course the students will be understand the governing equations and bou Computational fluid dynamics 	reacting ture of tu ations us gy, Coef eactions del, Mod <u>be able t</u> ndary co	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA	aminar f premixed rent com or reaction or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device COURSE C On success CO1 CO2	 Flame types, Conservation Equations for tames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation of equilibrium composition. Enthalpy and Energiame temperature, Modelling of CO, HC, NO reling -Hiroyasu soot model, Zeldovich NOx model DUTCOMES: Stul completion of this course the students will be understand the governing equations and bou Computational fluid dynamics Apply different gas exchange processes in metains. 	reacting ture of tu ations us gy, Coef eactions del, Moc <u>be able t</u> ndary co odeling.	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA	aminar f premixed rent com or reaction or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device COURSE C On success CO1 CO2 CO3	 Flame types, Conservation Equations for fames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation of equilibrium composition. Enthalpy and Energiame temperature, Modelling of CO, HC, NO rolling -Hiroyasu soot model, Zeldovich NOx model. DUTCOMES: Stul completion of this course the students will the Understand the governing equations and bout Computational fluid dynamics Apply different gas exchange processes in metagemetation. 	reacting ture of tu ations us gy, Coef eactions del, Mod <u>be able t</u> ndary co odeling. ngine.	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA onditions	aminar f premixed rent com or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device COURSE C On success CO1 CO2 CO3 CO4	 Flame types, Conservation Equations for fames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation of equilibrium composition. Enthalpy and Energiame temperature, Modelling of CO, HC, NO rolling -Hiroyasu soot model, Zeldovich NOx model. DUTCOMES: Stul completion of this course the students will be understand the governing equations and bou Computational fluid dynamics Apply different gas exchange processes in IC er Develop the combustion chemistry models in 	reacting ture of tu ations us gy, Coef eactions del, Mod <u>be able t</u> ndary co odeling. ngine.	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA onditions	aminar f premixed rent com or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				
mechanism premixed fla Turbulent r models. UNIT - V Calculation adiabatic fl Soot Mode Device COURSE C On success CO1 CO2 CO3	 Flame types, Conservation Equations for fames, diffusion flames. Turbulent flames -Struction premixed flames; Burning of solids, Simulation premixed flames; Burning of solids, Simulation of equilibrium composition. Enthalpy and Energiame temperature, Modelling of CO, HC, NO rolling -Hiroyasu soot model, Zeldovich NOx model. DUTCOMES: Stul completion of this course the students will the Understand the governing equations and bout Computational fluid dynamics Apply different gas exchange processes in metagemetation. 	reacting ture of tu ations us gy, Coef eactions del, Mod <u>be able t</u> ndary co odeling. ngine.	flows, L irbulent p sing diffe ficients f in SI ar lelling of TOTA onditions	aminar f premixed rent com or reaction of CI En After Tro L: 45 PE	flames - flames, nbustion 9 ons and ngines – eatment				

5. V.Ganesan, Computer Simulation of Spark Ignition Engine Processes, Universities Press, 2000

CO-PO Mapping

COs		POs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	3	2	-	2	-	3	2	2	3	1	2	
2	3	3	2	3	2	-	2	-	3	2	2	3	1	2	
3	3	3	2	3	2	-	2	-	3	2	2	3	1	2	
4	3	3	2	3	2	-	2	-	3	2	2	3	1	2	
5	3	3	2	3	2	-	2	-	3	2	2	3	1	2	
Avg	3	3	2	3	2	-	2	-	3	2	2	3	1	2	

	SUPERCHARGING AND SCAVENGING	L 3	Т 0	P 0	С 3
COURSE	OBJECTIVES:	5	U	U	J
	learning objective of this course is to prepare the students				
	design supercharger.				
	design turbocharger.				
	analyze I.C engine performance and emissions.				
	analyze scavenging of two stroke engines.				
	design muffler and port.				
UNIT - I	SUPERCHARGING				9
Mechanica Centrifuga	odifications required. Effects on Engine performance – The al Supercharging. Types of compressors – Positive displace I compressors – Performance characteristic curves – Surging	emen g an	t blo d Ch	wers nokin	; —
UNIT - II	for engine application – Matching of supercharger compressor a TURBOCHARGING	and E	ngir	ie.	9
Turbochar	ging methods - Thermodynamics – Engine exhaust manifolds	arrar	naen	nents	. —
	e, Variable nozzle turbochargers, Variable Geometry Turbochar				
•	ssor, Turbine and Engine.	5 9			9
	SCAVENGING OF TWO STROKE ENGINES				9
	of two stroke cycle engines – Classification of scavenging sys	tems	- 0	hard	-
	s in two stroke cycle engine – Terminologies – Sankey dia				
	cavenging terms – scavenging modelling – Perfect displacemen				
	ontrol through Reed valve induction.	i, i o	11000	IIIXI	·g.
UNIT -IV	PORTS AND MUFFLER DESIGN				9
	Port flow characteristics-Design considerations – Design of Int	ako 4	bne	Evha	-
-	Tuning- Kadenacy system.		anu		usi
	EXPERIMENTAL METHODS AND RECENT TRENDS IN TW			KE	
UNIT - V	ENGINES	0.01	NO		9
	ntal techniques for evaluating scavenging – Firing engine tests –				
	velopment in two stroke engines for improving scavenging. Di				
tests – De stroke con	velopment in two stroke engines for improving scavenging. Di				
	velopment in two stroke engines for improving scavenging. Di	rect i	njec	tion t	wo
stroke con	velopment in two stroke engines for improving scavenging. Di cepts.	rect i	njec	tion t	wo
stroke con	evelopment in two stroke engines for improving scavenging. Di cepts. TOT	rect i	njec	tion t	wo
stroke con COURSE On succes	evelopment in two stroke engines for improving scavenging. Discepts. TOTA	rect i	njec	tion t	wo
Stroke con COURSE On succes CO1	evelopment in two stroke engines for improving scavenging. Divident cepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers	rect i	njec	tion t	wo
stroke con COURSE On succes CO1 CO2	evelopment in two stroke engines for improving scavenging. Dir cepts. TOTA OUTCOMES: ssful completion of this course the student will be able to design superchargers design match turbochargers with engines	rect i	njec	tion t	wo
Stroke con COURSE On succes CO1 CO2 CO3	Avelopment in two stroke engines for improving scavenging. Divident cepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines.	rect i	njec	tion t	wo
stroke con On succes CO1 CO2 CO3 CO4	Avelopment in two stroke engines for improving scavenging. Discepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems	rect i	njec	tion t	wo
Stroke con COURSE On succes CO1 CO2 CO3	Avelopment in two stroke engines for improving scavenging. Divident cepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines.	rect i	njec	tion t	wo
stroke con On succes CO1 CO2 CO3 CO4	Avelopment in two stroke engines for improving scavenging. Divergets. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends	rect i	njec	tion t	wo
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I	Avelopment in two stroke engines for improving scavenging. Divident of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES:	AL: 4	njec 5 PE	ERIO	wo
Stroke con On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199	Avelopment in two stroke engines for improving scavenging. Divident of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97.	Publi	5 PE	ons,	DS
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He	Avelopment in two stroke engines for improving scavenging. Direcepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman	Publi	5 PE	ons,	DS
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He 200	Avelopment in two stroke engines for improving scavenging. Direcepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman 02.	Publi	5 PE	ons,	wo DS
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He 200 3. Joh	Avelopment in two stroke engines for improving scavenging. Discepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman 02. nn B. Heywood, Two Stroke Cycle Engine, SAE Publications, 19	Publi nn P	njec 5 PE	bns,	wo DS
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He 200 3. Joh 4. Ob	Avelopment in two stroke engines for improving scavenging. Discepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman 02. nn B. Heywood, Two Stroke Cycle Engine, SAE Publications, 19 ert, E.F., Internal Combustion Engines and Air Pollution, Intext I	Publi nn Pi 999. Educ	5 PE	bns,	wo DS
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He 200 3. Joh 4. Ob Pu	Avelopment in two stroke engines for improving scavenging. Discepts. TOTA OUTCOMES: asful completion of this course the student will be able to design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman 02. nn B. Heywood, Two Stroke Cycle Engines and Air Pollution, Intext I blishers, 1980.Richard Stone, Internal Combustion Engines, SA	Publi nn P 999. Educ E, 20	njec 5 PE icatic ublis atior 012.	ons, hers,	
Stroke con COURSE On succes CO1 CO2 CO3 CO4 CO5 REFEREN 1. G I 199 2. He 200 3. Joh 4. Ob Pu	Avelopment in two stroke engines for improving scavenging. Divident of this course the student will be able to a design superchargers design match turbochargers with engines design two stroke cycle engines. design intake and exhaust systems apply recent trends ICES: P Blair, Two stroke Cycle Engines Design and Simulation, SAE 97. inz Heisler, Advanced Engine Technology, Butterworth Heinman 02. In B. Heywood, Two Stroke Cycle Engines and Air Pollution, Intext I blishers, 1980.Richard Stone, Internal Combustion Engines, SA hweitzer, P.H., Scavenging of Two Stroke Cycle Diesel Engine,	Publi nn P 999. Educ E, 20	njec 5 PE icatic ublis atior 012.	ons, hers,	

COc	COs POs												PS	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

VERTICALS-III: VEHICLE DESIGN

AU23012	VEHICLE DESIGN DATA CHARACTERISTICS	L	T	P	C 3
COURSEC	DBJECTIVES:	3	0	0	3
	understand the various steps involved in the design of autom	otive	com	nonei	nts
	determine the various vehicle performance parameters	00	00111	pono	
	determine the various design parameters and to draw curves	usin	a the	se da	ta
	earn the engine design parameters and its importance.	aonn	g uno	00 44	
	Inderstand the importance of gear ratio				
UNIT - I	INTRODUCTION				9
_	selection of vehicle specifications - Choice of Cycle, fue	<u>- - </u>	heed	cyli	
	nt, number of cylinders, method of cooling, material, des				
	ariables affecting performance and emission.	Jigii	vano		and
	PERFORMANCE CURVES				9
-	, Power and torque curve, driving force against vehicle speed	- Ac	celer	ation	-
	in different gears for a typical car or truck plotted from speci			ation	and
UNIT - III	RESISTENCE TO VEHICLE MOTION	nouti	0110.		9
-	and plotting the curves of air, rolling and gradient resistance	201	drivin	a for	-
	ver, speed, rear axle ratio, Torque and mechanical efficiency				
speeds.	set, speed, real axie ratio, rorque and mechanical emolency	aru	nere		noic
UNIT - IV	ENGINE DESIGN				9
_	blume diagram, frictional mean effective pressure, engine ca	apac	itv. c	alcula	
	stroke length, velocity and acceleration, gas force, inertia an				
	nk angles – Side thrust on cylinder walls.				
UNIT - V	GEAR RATIOS				9
Determinati	ion of Gear Ratios, Acceleration and gradeability - typical pro	blem	ns.		
				PERIC	DDS
COURSE C	DUTCOMES:				
Upon comp	letion of the course, the students will be able to				
	Analyse the design variables and operating variables affect	ing th	ne		
CO1	performance and emission.	•			
CO2	Compute the vehicle performance parameters.				
CO3	Calculate and plot the curves of all the resistances at different	ent s	beed.		
	Interpret the modern system in engine and would help in de				
CO4	system with less impact to the environment.		5		
CO5	Demonstrate the design skill by determining the gear ratio				
	N. K., "Automotive Mechanics", Khanna Publishers, New De				
2. Held	dt, P.M., High Speed Combustion Engine, Oxford & IBH Publ	ishin	g Co	•,	
REFEREN	CES:				
	sign Data Handbook", PSG College of Technology,2013- Col	imba	tore.		
	in Averns, "Automobile Chassis Design", IllifeBookCo.,2001.				
	chin-Demidov, "Design of Automotive Engines"-Mir Publisher	s (19	84)		
	dcover P. Lukin, G. Gasparyants, V. Rodionov, "Automobile (Desia	n
	Calculations", Mir Publishers, Moscow, 1989.			9	-
	ert C. Juvinall and KurtM. Marshek, "Fundamentals of Machi	ne c	ompo	nent	
	ign",6 th Edition, Wiley, 2017				
Des					

COs	POs												P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

1 - Slight, 2 -	- Moderate,	3 – Substantial
-----------------	-------------	-----------------

		L	Т	Р	С
AU23013	GEOMETRIC DIMENSIONING AND TOLERANCING	3	0	0	3
	BJECTIVES:				
	inderstand the various aspects of geometric tolerances				
	inderstand the datum system				
	inalyse the aspects of tolerance				
	earn the selective assembly Inderstand the importance of various design aspects				
UNIT - I	INTRODUCTION TO GD&T				9
-	.5 standard. Examples for application of geometric tolerand	295 -	Featu	re co	-
frame - Rule Location tol and fixed fa	and Rule 2 of GD&T - Modifiers - Form tolerances - Orierances - Profile tolerances. True Position Theory - virtual s asteners – projected tolerance zone - zero true position to per layout gauging - compound assembly - examples.	entati ize co	on to ncep	lerano t - floa	ces - ating
UNIT - II	DATUM SYSTEMS				9
	freedom - grouped datum systems-different types - two	and	three	mut	-
perpendicul and hole -	ar grouped datum planes - grouped datum system with spi grouped datum system with spigot and recess pair and of translational and rotational accuracy - geometric analys	got a d ton	nd ree gue-s	cess lot p	- pin air -
UNIT - III	TOLERANCE ANALYSIS				9
 design for effect of to tolerances process cap review of re 	ach - DFM guidelines - standardisation - comparison of ma assembly - DFA index - Poka - Yoke principle; six sigma co lerances - sure fit law - normal law and truncated norm in axial dimensions for various machining operations - F pability metrics - Cp - Cpk - cost aspects - feature tolerance lationship between attainable tolerance grades and different to Tolerance chart.	oncep Ial la Proces Ses - s	ots. C w - c ss ca surfac	umula btain pabili ce fin	ative able ity – ish -
UNIT - IV	SELECTIVE ASSEMBLY				9
-	able and selective assembly - deciding the number of groups	oune-	mode	al-l· a	-
tolerances	of mating parts equal; model-II: total and group tolerances initial play - introducing secondary machining operations -	of sł	naft -	mode	el-III-
UNIT - V	DESIGN FOR MACHINING, FORM DESIGN OF CASTIN WELDMENTS	GS A	ND		9
Design feat	tures to facilitate machining -component design, machini	ng co	onside	eratio	ns -
redesign for	or manufacture - examples. Redesign of castings bas	ed o	n pa	rting	line
	ons - minimising core requirements - redesigning cast memb	ers us	sing w	eldm	ents
- use of wel	ding symbols - design of weldments.				
		DTAL	: 45 F	PERIC	DDS
	OUTCOMES:				
	letion of the course, the students will be able to				
CO1	understand the various aspects of geometric tolerances				
CO2	understand the datum system				
CO3	analyse the aspects of tolerance				
CO4	learn the selective assembly				
CO5	understand the importance of various design aspects				
York 2. Pau	an R Fischer, "Mechanical Tolerance Stackup and Analysis" k, 2011. I J Drake, "Dimensioning and Tolerancing Handbook", McG				
1999	9.				

REFERENCES:

- 1. Creveling C M, "Tolerance Design A Hand Book for Developing Optimal Specifications", Addison Wesley Longman, New York, 1997.
- Harry Peck, "Designing for Manufacture", Pitman Publications, London, 1983.
 Spotts M F, "Dimensioning and Tolerance for Quantity Production", Prentice Hall Inc., New Jersey, 1983.
- 4. Oliver R Wade, "Tolerance Control in Design and Manufacturing", Industrial Press Inc., New York, 1967.

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

	METROLOGY AND MEASUREMENT	L T 3 0	P 0	С 3
COURSE O	BJECTIVES:			-
1. Τοι	nderstand the different degree of accuracy obtained from o	different t	ypes	of
	uments			
2. To u	nderstand the process of reducing uncertainties in measure	ements		
3. To io	dentify the various instruments used for linear and angular i	measurei	ment	s
	nterpret the working of pressure force and torque measurer			
	rief the measurement of flow and temperature using variou	is instrum	ents	<u>.</u>
UNIT - I	SCIENCE OF MEASUREMENT			9
	measurement - direct comparison and indirect comparison -			
	nt system – types of input quantities – measurement standard			
	-errors- classifications of errors- zero, Sensors - transd			
•	and Inductive Sensors – Static characteristics– Dynamic o	characteri	stics	of
instruments				
UNIT - II	LINEAR AND ANGULAR MEASUREMENT			9
	suring instruments: Vernier, micrometer, interval measurement			
	n, interferometer, optical flats, limit gauges – Comparate			
	and electrical types, applications. Angular measurements: -			
	actor, angle Decker–Taper measurements, coordinate mea	asuring r	nachi	ine
	e Line Scanner. FORM MEASUREMENT			9
	ent of screw threads – Thread gauges, floating carriag	o micron	notor	
	ent of gears -tooth thickness-constant chord and base ta			
	ar testing machine radius measurements – surface finish, strai			
•	ess measurements.	ginness,	natrie	-33
UNIT -IV	PRESSURE, FORCE AND TORQUE MEASUREMENT			9
-	be, diaphragm, bellows and pressure capsules: Transducers	used in n	ressi	-
	nt – potentiometer, strain gauges, LVDT, piezo electric and			
	. Low pressure measurement – Mc leod gauge, Pirani			
	type pressure measurement. Force measuring devices – Ba			
	h bridges, load cells, proving ring. Torque measurement – p			
	an type brakes. Dynamometers – types.	- ,	-, -	
UNIT - V	MEASUREMENT OF TEMPERATURE AND FLOW			9
Measureme	nt of temperature - liquid in glass thermometer -partial and	d total im	mers	ion
	rs - resistance thermometers - thermistor -thermocouple			
	nt of flow – orifice plate, Venturi meter, flow nozzles, pitot stati			
	d constructional details – magnetic flow meters – hotwire aner			
flow meter -	ultrasonic flow meter.			
	TOTA	AL: 45 PE	RIO	DS
	UTCOMES:			
Upon comp	etion of the course, the students will be able to			
CO1	Demonstrate their knowledge about different measurement n	nethod ar	۱d	
001	devices used in industries.			
CO2	Design measuring equipment's for the measurement of press	sure force	; ,	
502	temperature and flow.			
	Generate new ideas in designing measuring instruments for	automotiv	/e	
CO3	application.			
CO3	Demonstrate their learned skill to develop new system that w	vould help) in	
CO3 CO4	keeping the environment sustainable.			
	Have the ability to handle and interpret measurement data, to	o estimate	Э	
		o estimate	9	

TEXTBOOKS:

- 1. Ernest O Doeblin, "Measurement systems", McGraw Hill Publishers, 2011.
- 2. R. K. Jain, "Engineering Metrology", Khanna Publishers, New Delhi, 2012.

REFERENCES:

- 1. Beckwith Thomas G, "Mechanical Measurements", 6rd Edition Pearson Education, 2008.
- 2. I.C Gupta, "Engineering Metrology", Danpat Rai Publications, 2005.
- 3. N.V. Raghavendra & L. Krishnamurthy, "Engineering Metrology and Measurements", Oxford University press, 2013
- 4. S K Singh "Industrial Instrumentation & Control", McGrawHill, 2009

COs		POs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3	
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3	
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3	
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3	
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3	
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3	

AU23015	NEW PRODUCT DEVELOPMENT	L 3	T 0	P 0	C 3
COURSE	OBJECTIVES:	•	•	•	•
	introduce the importance of product design				
	understand the needs of a customer towards a product				
	initiate the idea of creativeness on product				
	understand the decision-making concepts.				
	design a product based on cost frame and need of the custome	۶r			
UNIT - I	INTRODUCTION				9
	eveloping products – the importance of engineering design – t	VNAS	of	المادعا	-
	process – relevance of product lifecycle issues in design –de				
	ards- societal considerations in engineering design –generic proc				
	various phases of product development-planning for product				
	narket segments- relevance of market research.	013	CSIA	01311	ing
	CUSTOMER NEEDS				9
		rorol		hum	
	customer needs -voice of customer -customer populations- hie		•		
	ering methods – affinity diagrams – needs importance- establish				
	tics-competitive benchmarking- quality function deployment-	nous	e oi	qua	uity
	sign specification-case studies.				-
-	CREATIVE THINKING				9
	ninking -creativity and problem solving- creative thinking met				
	ncepts-systematic methods for designing -functional decompo				
•	ition – functional representation –morphological methods-	TRIZ	- ax	kioma	atic
design.					
UNIT -IV	DECISION MAKING AND PRODUCT ARCHITECTURE				9
	naking –decision theory –utility theory –decision trees –co				
	Pugh concept selection method- weighted decision matrix -a				
process -	ntroduction to embodiment design -product architecture - t	ypes	of	modu	ular
architectur	e – steps in developing product architecture.				
UNIT - V	DESIGN AND COST ANALYSIS				9
Industrial of	lesign – human factors design –user friendly design – design f	or sei	vice	abilit	у —
design for	environment - prototyping and testing - cost evaluation -cat	egori	es o	f cos	st –
overhead	costs - activity-based costing -methods of developing c	ost e	estin	nates	s —
	ring cost -value analysis in costing.				
	TOT	۱L: 4	5 PE	RIO	DS
COURSE	OUTCOMES:				
Upon com	pletion of the course, the students will be able to				
CO1	Introduce the importance of product design.				
CO2	Understand the needs of a customer towards a product.				
CO3	Initiate the idea of creativeness on product.				
CO4	Understand the decision-making concepts.				
CO5	Design a product based on cost frame and need of the custom)er			
TEXTBOO					
	a Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and	Dov		mont	
	Edition, 2009, Tata McGraw-Hill Education, ISBN-10-007-14679		siop	nent	,
	n Otto, Kristin Wood, "Product Design", Indian Reprint 2015, Pe		~		
		aisu	1		
	cation, ISBN 9788177588217				
		rod	tian	" 0	J
	Dym, Patrick Little, "Engineering Design: A Project-based Int	oauc	lion	, 3rd	1
	n, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7.			- 0	_ /
2. Georg	e E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw-I	HIII In	tern	ation	ai
Editio	n, 4th Edition, 2009, ISBN 978-007-127189-9.		_		
Edition 3. Youse	n, 4th Edition, 2009, ISBN 978-007-127189-9. If Haik, T. M. M. Shahin, "Engineering Design Process", 2nd Ed age Learning, 2010, ISBN 0495668141.	lition	Rep	rint,	

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

1 – Slight,	2 – Moderate,	3 – Substantial

AU23016	REVERSE ENGINEERING FOR AUTOMOBILES		T	P	C
		2	0	2	3
	DBJECTIVES: earning objective of this course is to prepare the students for	or			
	damental concepts and principles of reverse engineering in		luct d	ocian	
	l development.	pioc		coigi	1
	cept and principles material characteristics, part durability a	and li	fe lim	itatio	n in
	erse engineering of product design and development.			lano	
	concept and principles of material identification and proces	s vei	rificati	on in	
	erse engineering of product design and development. the c				
prir	ciples of data processing, part performance and system co	mpat	tibility	in	
	erse engineering of product design and development.				
	alyzing the various legal aspect and applications of reverse	engi	neerir	ng in	
	duct design and development.				
UNIT - I	INTRODUCTION TO REVERSE ENGINEERING				6+3
	 Uses – The Generic Process – Phases – Computer Aideo 				
	g - Surface and Solid Model Reconstruction – Dimensional				_
	g. Practical: Prepare a function and product structure of an	n auto	omotiv	/e	
componen					
UNIT - II	MATERIAL CHARACTERISTICS, PART DURABILITY AN LIMITATION		IFE		6+3
Allov Struc	ture Equivalency – Phase Formation and Identification – M	ocha	nical	Stron	ath -
	-Part Failure Analysis – Fatigue – Creep and Stress Ruptur				
	ailure. Practical : Freehand sketch of assembly and parts				intany
	MATERIAL IDENTIFICATION AND PROCESS VERIFICA		N		6+3
	pecification - Composition Determination - Microstructure A				
	ring Process Verification. Practical : Prepare part interface				
UNIT -	DATA PROCESSING, PART PERFORMANCE AND SYS				6+3
IV	COMPATIBILITY				
	Analysis – Data Analysis – Reliability and the Theory of Inte				bull
	Data Conformity and Acceptance – Data Report – Perform				
Methodolo	gy of Performance Evaluation – System Compatibility. Prac	ctical	: Prep	bare	
manufactu	ring drawing for assembly and parts				6.4
manufactu UNIT - V	ACCEPTANCE AND LEGALITY OF RE	Th	ind D		6+3
manufactu UNIT - V Legality of	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret		ird-Pa	arty	6+3
manufactu UNIT - V Legality of	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin	ng		2	
manufactu UNIT - V Legality of Materials.	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T	ng	ird-Pa L: 45	2	
manufactu UNIT - V Legality of Materials.	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T DUTCOMES:	ng		2	
manufactu UNIT - V Legality of Materials. COURSE Upon com	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T DUTCOMES: Deletion of the course, the students will be able to	ig OTA	L: 45	PER	
manufactu UNIT - V Legality of Materials.	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin TOUTCOMES: Deletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse	ig OTA	L: 45	PER	
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T OUTCOMES: Deletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development.	ig OTA engir	L: 45	PER	IOD
manufactu UNIT - V Legality of Materials. COURSE Upon com	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin TOUTCOMES: Deletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse	og OTA engir	L: 45 neerir	PER	IODS
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1 CO2	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T OUTCOMES: bletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p	o OTA engir part c	L: 45 neerir lurabi	PER ng in lity a ent.	IODS
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T OUTCOMES: Deletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p life limitation in reverse engineering of product design and Apply the concept and principles of material identification a verification in reverse engineering of product design and d	engir part o deve and p levelo	L: 45 neerir durabi elopm proces	PER ng in lity a ent. ss nt.	nd
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1 CO2 CO3	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T DUTCOMES: bletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p life limitation in reverse engineering of product design and Apply the concept and principles of material identification a verification in reverse engineering of product design and d Apply the concept and principles of material identification a verification in reverse engineering of product design and d Apply the concept and principles of data processing, part p	engir part c deve and p levelc perfo	L: 45 neerir durabi elopm proces ppmei rmano	PER ng in lity a ent. ss nt.	nd
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1 CO2	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T DUTCOMES: bletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p life limitation in reverse engineering of product design and Apply the concept and principles of material identification a verification in reverse engineering of product design and d Apply the concept and principles of data processing, part p system compatibility in reverse engineering of product design and d	engir part c deve and p levelc perfo	L: 45 neerir durabi elopm proces ppmei rmano	PER ng in lity a ent. ss nt.	nd
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1 CO2 CO3	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin TOUTCOMES: Deletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p life limitation in reverse engineering of product design and Apply the concept and principles of material identification a verification in reverse engineering of product design and d Apply the concept and principles of data processing, part p system compatibility in reverse engineering of product design and d development.	engir part o deve and p levelo berfoi sign a	L: 45 heerir durabi elopm proces opmei rmano	PER ng in lity a ent. ss nt. ce an	nd
manufactu UNIT - V Legality of Materials. COURSE Upon com CO1 CO2 CO3	ACCEPTANCE AND LEGALITY OF RE Reverse Engineering – Patent – Copyrights –Trade Secret Practical: Prepare a prototype using 3D Printing / machinin T DUTCOMES: bletion of the course, the students will be able to Apply the fundamental concepts and principles of reverse product design and development. Apply the concept and principles material characteristics, p life limitation in reverse engineering of product design and Apply the concept and principles of material identification a verification in reverse engineering of product design and d Apply the concept and principles of data processing, part p system compatibility in reverse engineering of product design and d	engir part o deve and p levelo berfoi sign a	L: 45 heerir durabi elopm proces opmei rmano	PER ng in lity a ent. ss nt. ce an	nd

TEXTBOOKS:

- 1. Wego Wang, "Reverse Engineering Technology of Reinvention", CRC Press, 2011.
- 2. Vinesh Raj and Kiran Fernandes, "Reverse Engineering: An Industrial Perspective", Springer-Verlag London Limited 2008.

REFERENCES:

- 1. Kathryn, A. Ingle, "Reverse Engineering", McGraw-Hill, 1994.
- 2. Linda Wills, "Reverse Engineering", Kluver Academic Publishers, 1996
- 3. Donald R. Honsa, "Co-ordinate Measurement and Reverse Engineering", American Gear Manufacturers Association.

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	3	2	1	1	3	1	2	3	3	3
2	3	3	2	1	3	2	1	1	3	1	2	2	3	3
3	3	3	2	1	3	2	1	1	3	1	2	2	3	3
4	3	3	2	1	3	2	1	1	3	1	2	2	3	3
5	3	3	2	1	3	2	1	1	3	1	2	2	3	3
Avg	3	3	2	1	3	2	1	1	3	1	2	2	3	3

AU23017	FINITE ELEMENT TECHNIQUES	L 3	Т 0	P 0	C 3
COURSE	OBJECTIVES:	3	0	U	5
	earning objective of this course is to prepare the students				
	Understand and perform engineering analysis of structural men	nbers	s usir	าต	
FEI				0	
	evaluate and interpret FEA analysis results for design and eval poses	uatio	n		
•	understand the computer codes for FEM Elements.				
	derive the characteristics equation of Iso parametric elements.				
	Imply knowledge towards Modal analysis in a vibrating element	anal	ytica	ally.	
UNIT - I	INTRODUCTION		,	,	9
Engineerin	g design analysis. Basic concepts of FEM. Steps in FEM.	Adva	ntac	ies a	nd
	of FEM. Handling of simultaneous equations - Gaussian elim				
	Jordan method. Numerical integration. Commercial FEM packa				
		J			9
Spring Ele	ment. Bar elements, uniform section, mechanical and thermal	load	ing,	vary	ing
	uss analysis. Beam element - problems for various loading		•	•	-
	- Use of local and natural coordinates. Computer codes for dis				
					9
	ss, Plane strain and axisymmetric problems, constant and linear	strai	n. tri	angu	lar
	stiffness matrix, axisymmetric load vector. Computer codes for				
elements.					
UNIT -IV	ISOPARAMETRIC ELEMENTS				9
Definitions	, Shape function for 4, 8 and 9 nodal quadrilateral elements, Sti	ffnes	s ma	atrix a	and
consistent	load vector.				
UNIT - V	MODAL ANALYSIS				9
Equations	of motion for vibration problems. Consistent and lumped	mas	s m	natric	es.
	n of element mass matrices. Free vibration problem formulation				
FEM in str	uctural analysis, heat transfer and fluid flow problems with respe	ect to	Aut	omot	ive
industries.					
	TOTA	\L: 4	5 PE	RIO	DS
	OUTCOMES:				
Upon com	pletion of the course, the students will be able to				
CO1	Understand and perform engineering analysis of structural me FEM.	mber	's us	ing	
CO2	Demonstrate the ability to evaluate and interpret FEA analysis	resu	lts fo	or	
	design and evaluation purposes				
CO3	Develop computer codes for FEM Elements.				
CO4	Derive the characteristics equation of Iso parametric elements				
CO5	Apply knowledge towards Modal analysis in a vibrating element	nt ana	alytic	ally	
TEXTBOO					
•	I L Logan, "A First Course in the Finite Element Method", 5th E neering, 2010	dition	, CL		
3. Sing	d V Hutton, "Fundamentals of finite element analysis", McGraw iresu S. Rao, "The Finite Element Method in Engineering", Sixtl erworth Heinemann, 2017.			, 201	7
REFEREN					
1. Bathe	, K.J. and Wilson, E.L., Numerical Methods in Finite Elements A ce Hall of India, 1985.	Analy	sis,		
2. Krishr	amurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2000 J.N., "An Introduction to Finite Element Method", Third edition,		Graw	Hill	
2000.				,	

- 4. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, Inc., 2001.
- 5. Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to Finite Elements in Engineering Printice Hall India, Third Edition, 2003.

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	3	2	1	1	3	1	2	3	3	3
2	3	3	2	1	3	2	1	1	3	1	2	2	3	3
3	3	3	2	1	3	2	1	1	3	1	2	2	3	3
4	3	3	2	1	3	2	1	1	3	1	2	2	3	3
5	3	3	2	1	3	2	1	1	3	1	2	2	3	3
Avg	3	3	2	1	3	2	1	1	3	1	2	2	3	3

VERTICALS-IV: ELECTRIC VEHICLE TECHNOLOGY

AU23018	BATTERIES AND MANAGEMENT SYSTEM	L 3	Т 0	P 0	3
COURSE	OBJECTIVES:	Ŭ	v	•	
The main	earning objective of this course is to prepare the students for				
1. Ac	quire knowledge of electric vehicle batteries.				
2. De	sign a Battery Pack.				
3. Ba	tery Model or Simulation.				
4. Est	imate State-of-Charges in a Battery Pack.				
	proach different BMS architectures during real world usage.				
UNIT - I	ADVANCED BATTERIES				9
Characteri	teries-different formats, chemistry, safe operating area, e stics- SOC, DOD, SOH. Balancing-Passive Balancing Vs Active NCM and NCA Batteries. Battery specifications.				
UNIT - II	BATTERY PACK				9
- definitio	ck- design, sizing, calculations, flow chart, real and simulation Mon, testing methods-relationships with Power, Temperature and				
	e. Cloud based Vs Local Smart charging.				
	BATTERY MODELLING				9
	odelling Methods-Equivalent Circuit Models, Electrochemica				
	Nodel. ECM Comparisons- Rint model, Thevenin model, PNC			I. St	ate
	lels- Introduction. Battery Modelling software/simulation framew	Orks/	•		
	BATTERY STATE ESTIMATION	000		1:00 of	g
	nation- Definition, importance, single cell Vs series batteries				
	zy forecast method, Kalman filter. Estimation Algorithms.	neu	ame	etwoi	K5
	BMS ARCHITECTURE AND REAL TIME COMPONENTS				g
	anagement System- need, operation, classification. BMS and	chite	cture	- AS	-
	ation Modules- CAN Open-Flex Ray- CANedge1 package. Bat				
	ent with Model- Based Design.	,			
	ΤΟΤΑ	۸L: 4	5 PE	RIO	DS
COURSE	OUTCOMES:				
Upon com	pletion of the course, the students will be able to				
CO1	Acquire knowledge of different Li-ion Batteries performance.				
CO2	Design a Battery Pack and make related calculations.				
CO3	Demonstrate a Battery Model or Simulation.				
CO4	Estimate State-of-Charges in a Battery Pack.				
CO5	Approach different BMS architectures during real world usage.				
TEXTBOC	KS: nun Jiang and Caiping Zhang, "Fundamentals and applications (of Lit	hium	n-Ion	
	eries in Electric Drive Vehicles", Wiley, 2015.				ks
batte	eries in Electric Drive Vehicles", Wiley, 2015. de Andrea, "Battery Management Systems for Large Lithium-Io	n Ba	ttery	Pac	
batte 2. Davi ART	de Andrea, "Battery Management Systems for Large Lithium-lo ECH House, 2010.	n Ba	ttery	Pac	
batte 2. Davi ART REFEREN	de Andrea, "Battery Management Systems for Large Lithium-lo ECH House, 2010. CES:				
batte 2. Davi ART REFEREN 1. De	de Andrea, "Battery Management Systems for Large Lithium-lo ECH House, 2010.				

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	3	2	2	1	2	2	2	1	3	3	2
2	3	2	3	3	2	2	1	2	2	2	1	3	3	2
3	3	2	3	3	2	2	1	2	2	2	1	3	3	2
4	3	2	3	3	2	2	1	2	2	2	1	3	3	2
5	3	2	3	3	2	2	1	2	2	2	1	3	3	2
Avg	3	2	3	3	2	2	1	2	2	2	1	3	3	2

1 – Slight, 2 – Moderate, 3 – Substantial	
---	--

AU23019	TRACTION MOTORS	L T 3 0	P C 0 3
COURSE OBJ	ECTIVES:		
The main learn	ing objective of this course is to prepare the students for		
	tand Traction systems fundamentals		
	raction mechanics principles		
3. Identify	the power supply equipment for traction systems		
	the characteristics of traction motors		
5. Differer	tiate AC and DC traction drives		
UNIT - I	TRACTION SYSTEMS		9
Electric drives	- Advantages & disadvantages - System of track electrifi	cation -	D.C., 1
Phase low freq	uency, 3-Phase low frequency and composite systems, Prol	blems of '	I-phase
traction syster	n – Current unbalance, Voltage unbalance, Productior	n of har	monics
Induction effec	ts, Booster transformer – Rail connected booster transforr	ner. Com	parisor
between ac. ar	nd D.C. systems.		
UNIT - II	TRACTION MECHANICS		9
Types of servi	ces, Speed – time curves – Construction of quadrilateral	and trap	bezoida
speed time cu	rves, Average & schedule speeds. Tractive effort - Spee	ed charac	cteristic
Power of tracti	on motor, specific energy consumption – Factors affecting	g specific	energy
consumption, C	Coefficient of adhesion, slip – Factors affecting slip, magnet	ically sus	pendeo
trains.			
UNIT - III	POWER SUPPLY ARRANGEMENTS		9
High voltage su	upply, Constituents of supply system – Substations, feeding	post, Fe	eding 8
	ingements, Remote control centre, Design considerations		
	pment – principle of design of OHE, Polygonal OHE – D		
	Basic sag & tension calculations, Dropper design, Current c		
OHE.			0
UNIT -IV	TRACTION MOTORS		9
Desirable chara	acteristics, D.C. series motors, A.C. series motors, 3-Phase	induction	motors
linear induction	motors, D.C. motor series & parallel control – Shunt bridge	1	D
		transition	– Drun
controller, Con	tact type bridge transition control, Energy saving, Types c		
	tact type bridge transition control, Energy saving, Types o , Conditions for regenerative braking, Stability of motors ur	of braking	in A.C
		of braking	in A.C
and D.C drives		of braking nder rege	in A.C
and D.C drives braking. UNIT - V	, Conditions for regenerative braking, Stability of motors un	of braking nder rege /ES	in A.C nerative
and D.C drives braking. UNIT - V Advantages of	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV	of braking oder rege /ES stage cor	in A.C nerative 9 overters
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin	of braking nder rege YES stage con I inductio g, Diesel	in A.C nerative 9 overters n moto electric
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two s motors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series	of braking nder rege YES stage con I inductio g, Diesel	in A.C nerative 9 overters n moto electric
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin	of braking nder rege YES stage con I inductio g, Diesel	in A.C nerative 9 overters n moto electric
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes.	of braking nder rege YES stage con I inductio g, Diesel	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES:	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completio	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completio CO1	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VSI ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag COURSE OUT Upon completin CO1 CO2	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completio CO1 CO2 CO3	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS etion — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completin CO1 CO2 CO3 CO4	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag COURSE OUT Upon completio CO1 CO2 CO3 CO4 CO5 REFERENCES	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives.	of braking nder rege /ES stage cor l inductio g, Diesel motor, Al	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completio CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Partab.	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS ction — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives.	of braking nder rege YES stage con I inductio g, Diesel motor, Al AL: 45 PE	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cac COURSE OUT Upon completio CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Partab.	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS etion — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives. H – Modern Electric Traction, Dhanpat Rai & Sons – 1998.	of braking nder rege YES stage con I inductio g, Diesel motor, Al AL: 45 PE	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag COURSE OUT Upon completio CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Partab. 2. Dubey. 2001.	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two semotors – CSI fed squirrel cage induction motor, PWM VS etion — Chopper controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives. H – Modern Electric Traction, Dhanpat Rai & Sons – 1998.	of braking nder rege ZES stage con I inductio g, Diesel motor, Al AL: 45 PE	in A.C nerative 9 overters n moto electric ternato
and D.C drives braking. UNIT - V Advantages of Control of ac. drive, D.C. trac traction — D.C fed squirrel cag COURSE OUT Upon completio CO1 CO2 CO3 CO4 CO5 REFERENCES 1. Partab. 2. Dubey. 2001. 3. C. L. W	, Conditions for regenerative braking, Stability of motors un SEMI CONDUCTOR CONVERTER CONTROLLED DRIV A.C. Traction – Control of D.C. motors – single and two sem motors – CSI fed squirrel cage induction motor, PWM VSE per controlled D.C. motors, composite brakin . generator fed D.C series motor, Alternator fed D.C series ge induction motor, Locomotive and axle codes. TOTA COMES: on of the course, the students will be able to Understand Traction systems fundamentals. Apply Traction mechanics. Identify the power supply equipment for traction systems. Analyze various types of motors used in traction. Differentiate AC and DC traction drives. H – Modern Electric Traction, Dhanpat Rai & Sons – 1998. G.K. – Fundamentals of Electrical Drives, Narosa Publishir	of braking nder rege ZES stage con I inductio g, Diesel motor, Al AL: 45 PE	in A.C nerative 9 overters n moto electric ternato

4. J.B. Gupta – Utilization of Electrical Power and Electric Traction, S. K. Kataria & Sons publications, 9th edition 2004.

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	3	2	2	1	2	2	2	1	3	3	2
2	3	2	3	3	2	2	1	2	2	2	1	3	3	2
3	3	2	3	3	2	2	1	2	2	2	1	3	3	2
4	3	2	3	3	2	2	1	2	2	2	1	3	3	2
5	3	2	3	3	2	2	1	2	2	2	1	3	3	2
Avg	3	2	3	3	2	2	1	2	2	2	1	3	3	2

	POWER ELECTRONICS FOR ELECTRIC VEHICLE APPLICATION	L 3	Т 0	P 0	<u>С</u> 3
COURSE	OBJECTIVES:		-	-	-
The main left 1. Def	earning objective of this course is to prepare the students for ine and understand the power semiconductor components and tracteristics	its			
2. Dis	tinguish and demonstrate the different DC-DC and AC-AC convergences and relate the operation, characteristics and performance				
rec	tifiers npare and contrast the operation, switching techniques for vario	•			
DC	-AC inverters sign and develop the motor drives for automotive motor control				
UNIT - I	AUTOMOTIVE SEMICONDUCTOR DEVICES	- 1 1			9
	n to power semiconductor devices, Diodes: Construction, ch	aracte	eristi	cs a	
application Transistors characteris techniques Circuits E Junction, E	s- Rectification, Diodes – Freewheeling, Diodes - Cla BJT, Power MOSFETs, and - Low-Voltage Load Drivers, IGB atics and applications. Operation parametrization: Turn ON Series and Parallel operation Power Integrated Circuits, F xamples, Smart Power Devices, Emerging Device Techno Emerging Device Technologies - Sic Devices, Protection circu al analysis in semiconductors, Interpretation of data sheets.	mpine Ts: C and Power	g D onst Tur Inte s -	evice ructio n Ol egrat Supe	es, on, FF ed er-
	CHOPPER				9
Chopper ci Boost Con Control str Buck, Boos Buck Con Componen Analysis, E Boost Con	rcuit – Construction, Operation and Types, DC chopper: Buck, I verter: Construction, Principle of Operation and Characteristi rategies: Variable and constant frequency- Bi-directional ope st, and Buck-Boost Converter Circuit overview, Buck Converter verter - circuit, Buck Converter - Analysis, Buck Converter, B its, Boost Converter - Circuit, Boost Converter - Analysis, Bo Buck-Boost Converter – Components, Buck-Boost Converter verter – Analysis, Push-Pull Converter: Half Bridge and Full B ers: Construction, Working and types.	cs – ration er - Co oost oost (– Ci	Duty omp Con Con Conv	/ cyc ervie onen verte verter , Buc	ck- ele, ew, its, r - ck-
	CONVERTERS				9
Three-Pha Diode Rec of Dynami Thermistor DC Rectifie Topology a and Chara overview, V inverters, C	Characteristics and Circuit Configuration, Full Bridge Diode Ase Full-Bridge Diode Rectifier - Circuit Configuration, Three-Philier – Analysis, Three-Phase Full-Bridge Diode Rectifier – Watic Breaking Unit, Calculation of DC-Link Power, Three-Phile AC-DC Rectifier-Circuit Configuration, Three-Phase Full-Bridge er-Analysis, Three-Phase Full-Bridge Thermistor AC-DC Rectifier-Circuit Configuration, Three-Phase Full-Bridge er-Analysis, Three-Phase Full-Bridge Thermistor AC-DC Rectifier-Circuit Configuration, Three-Phase Full-Bridge er-Analysis, Three-Phase Full-Bridge Thermistor AC-DC Rectifier-Circuit Configuration, Three-Phase Full-Bridge Control Scheme, Ripple Inverters: Ty/oltage Source Inverters: 120 and 180 degree mode of operation Current Source inverters applications, Control Techniques – PWI monics, Current control techniques – Hysteresis Current Control Network (Control Scheme), Ripple Inverters: Control Current Source inverters applications, Control Techniques – PWI monics, Current control techniques – Hysteresis Current Control Scheme).	hase avefor ase e The tifier-\ iple o pes o n, Cur M ger	Full ms, Full- rmis Nav f Op of Ir rent nerat	-Brid Desi Brido tor A eforn erati verte Sour ion a	ge gn ge. C- ns, on ers ce nd
UNIT -IV	AUTOMOTIVE MOTOR DRIVES				9
Drive modu types, Spe drive. DC operation Construction	alle architecture, DC motor drives: DC motor- Construction, Work ed control techniques, converter fed operation, Introduction to motor drives-Types, Torque Production in Brushed DC-Moto connected DC motor drives, Induction Motor Drives: I on, Working Principle and types, Speed control techniques, inver n to permanent magnet motor drive, Induction Motor Drives., peed Drive operating modes, Torque and speed control of I	brusl or Dri nduct ter fe Indu	nless ves, ion d op ctior	s mo Seri moto eration n mo	nd tor ies or- on, tor

induction motors, Induction motor drives for Electric Vehicles, Configurations Drive module for Electric vehicles.

UNIT - VPOWER ELECTRONICS INTERFACE FOR ELECTRIC VEHICLES9Schematic diagram of the battery electric vehicles, Power distribution, Power Management
Control Strategy, Back-to-Back power converters, Calculation of DC-Link Power, Design of
heat sink, G2V and V2G operation in EV, Power Quality Improvement, Automotive
standards.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students will be able to

opon com	
CO1	List and recognize the various power semiconductor devices suitable for motor drive applications
CO2	Identify and solve the DC-DC and AC-AC converters suitable for the desired requirements
CO3	Experiment and sketch the various AC-DC Rectifier configurations and their input and output Waveforms
CO4	Relate and use the DC - AC Inverters with various sources and control techniques
CO5	Investigate and select the various motor drives suitable for the desired applications

REFERENCES:

- 1. Ali_Emadi" Handbook of automotive power electronics and motor drives",3rd Edition, 2014
- 2. Ned Mohan, T.M. Undeland, W.P. Robbins," Power Electronics: Converters, applications and design", John Wiley and Sons, 3rd Edition, 2006.
- 3. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 4th Edition, New Delhi, 2013.

CO-PO Mapping

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	3	2	2	1	2	2	2	1	3	3	2
2	3	2	3	3	2	2	1	2	2	2	1	3	3	2
3	3	2	3	3	2	2	1	2	2	2	1	3	3	2
4	3	2	3	3	2	2	1	2	2	2	1	3	3	2
5	3	2	3	3	2	2	1	2	2	2	1	3	3	2
Avg	3	2	3	3	2	2	1	2	2	2	1	3	3	2

AU23021	AUTONOMOUS AND CONNECTED VEHICLES	L	Т	Р	C			
	DBJECTIVES:	3	0	0	3			
	earning objective of this course is to prepare the st	udents f	for					
	lerstand the requirements of connected vehicles							
	erentiate the levels of automation							
	ign the hardware requirements in connected vehic	les						
	ate software base in connected vehicles							
5. Und	lerstand the effect of human factor							
UNIT - I	INTRODUCTION TO AUTONOMOUS VEHICLE	TECHN	IOLOG	Y	9			
Introductior	- SAE autonomous Level Classification-Example	s-Appli	cation o	f Auton	omou			
	vantages and Disadvantages of Autonomous Veh	icles.						
UNIT - II	PATH PLANNING AND DECISION MAKING				9			
	s- Approximation- Heuristic- Graph Based-Point							
	of decision making and path planning- Application							
	planning algorithms. Principles of decision ma	king ar	nd path	planni	ng fo			
	s vehicles-Decision making							
UNIT - III	SENSORS, PERCEPTION AND VISUALISATIO				9			
	n to sensors, perception and visualisation for a							
	architectures and multiple sensor fusion-AI algorith	nms for	sensing	and im	naging			
neural netw								
UNIT - IV	NETWORKING AND CONNECTED VEHICLES				9			
	d future vehicle networking technologies- CAN, LI							
	e of modern validation and verification methods. 262 within the overall control system. Inter- de							
	and control system-advanced test methods for the							
	connected vehicle control (CACC). vehicle-to							
	re [V2I], and Vehicle to "Cloud" [V2C]. Application							
	laborative adaptive cruise and vehicle platooning.							
UNIT - V	HUMAN FACTORS AND ETHICAL DECISION	AKING	3		9			
Introductior	n to Human Factors-Human Performance: Perce	ption a	nd Atte	ntion-Si	tuatio			
	and Error-Human Reliability: Driver Workload							
Motivation	in Design-Trust in Autonomous Vehicles and Ass	sistive 7	Fechnol	ogy-De	signin			
	ems-Driverless Vehicles and Ethical Dilemmas: H							
	tware-Application of Human Factors in Autonomou		cles. Int	ernatior	nal an			
national rec	gulatory frameworks for CAV and their safe operati							
			FOTAL:	45 PEI	RIOD			
	OUTCOMES:							
	letion of the course, the students will be able to Estimate vehicle state based on available data.							
CO1								
CO2	Describe various computer vision features and te							
CO3	Develop motion plan for the vehicle based on the	enviror	nment, k	pehavio	ur and			
	interaction of objects.			hiele -				
CO4	Describe the applications of AI in autonomous an	a conne	ected ve	enicies.				
CO5	Analyse human factors in autonomous vehicles							
	KS: pnomous Driving: How the Driverless Revolutior reas Herrmann, Walter Brenner, Rupert Stadler,							

Andreas Herrmann, Walter Brenner, Rupert Stadler, ISBN-10 1787148343, ISBN-13 978-1787148345, Emerald Publishing Limited, 26 March 2018.

REFERENCES:

- Autonomous Vehicles: Technologies, Regulations, and Societal Impacts, George Dimitrakopoulos, Aggelos Tsakanikas and Elias Panagiotopoulos, Paperback ISBN: 9780323901376, eBook ISBN: 9780323901383, 1st Edition - April 14, 2021, Elsevier.
- Driverless: Intelligent Cars and the Road Ahead (MIT Press) 1St Edition, by Hod Lipson, Melba Kurman), ISBN-13: 978-0262035224, ISBN-10: 0262035227, September 23, 2016.

COs						P	Os						P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	3	2	1	1	3	1	2	3	3	3
2	3	3	2	1	3	2	1	1	3	1	2	2	3	3
3	3	3	2	1	3	2	1	1	3	1	2	2	3	3
4	3	3	2	1	3	2	1	1	3	1	2	2	3	3
5	3	3	2	1	3	2	1	1	3	1	2	2	3	3
Avg	3	3	2	1	3	2	1	1	3	1	2	3	3	3

1 –	Slight,	2 –	Moderate,	3 –	Substantial
-----	---------	-----	-----------	-----	-------------

AU23022	ARTIFICIAL INTELLIGENCE FOR VEHICLES							
COURSE	OBJECTIVES:							
	earning objective of this course is to prepare the students for							
	idy about uninformed and Heuristic search techniques.							
	arn techniques for reasoning under uncertainty							
	oduce Machine Learning and supervised learning algorithms							
	idy about ensembling and unsupervised learning algorithms							
	arn the basics of deep learning using neural networks							
UNIT - I	PROBLEM SOLVING 9							
	n to AI - AI Applications - Problem solving agents - search algorithms -							
	d search strategies – Heuristic search strategies – Local search and optimization							
	 adversarial search – constraint satisfaction problems (CSP) 							
UNIT - II	PROBABILISTIC REASONING 9							
	der uncertainty – Bayesian inference – naïve bayes models. Probabilistic							
•	- Bayesian networks - exact inference in BN - approximate inference in BN -							
causal net								
	SUPERVISED LEARNING 9							
	n to machine learning - Linear Regression Models: Least squares, single &							
	ariables, Bayesian linear regression, gradient descent, Linear Classification							
	iscriminant function - Probabilistic discriminative model - Logistic regression,							
	ic generative model – Naive Bayes, Maximum margin classifier – Support vector							
	Decision Tree, Random forests.							
UNIT -IV	ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING 9							
	multiple learners: Model combination schemes, Voting, Ensemble Learning -							
	poosting, stacking, Unsupervised learning: K-means, Instance Based Learning:							
UNIT - V	ssian mixture models and Expectation maximization. NEURAL NETWORKS 9							
-								
	n - Multilayer perceptron, activation functions, network training – gradient descent on – stochastic gradient descent, error backpropagation, from shallow networks							
	networks –Unit saturation (aka the vanishing gradient problem) – ReLU,							
	meter tuning, batch normalization, regularization, dropout. reinforced learning.							
nyporpara	TOTAL: 45 PERIODS							
COURSE	OUTCOMES:							
	pletion of the course, the students will be able to							
CO1	Use appropriate search algorithms for problem solving							
CO2	Apply reasoning under uncertainty							
CO3	Build supervised learning models							
	Build ensembling and unsupervised models CO5: Build deep learning neural							
CO4	network models							
CO5	Build deep learning neural network models							
TEXTBOO	NKS:							
	art Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach",							
	urth Edition, Pearson Education, 2021.							
	nem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition,							
202								
REFEREN								
1. Dai	n Watterson, "Introduction to Artificial Intelligence and Expert Systems", Pearson							
Edu	ucation,2007							
Edu 2. Kev	vin Night, Elaine Rich, and Nair B. "Artificial Intelligence", McGraw Hill, 2008							
Edu 2. Kev 3. Pat	vin Night, Elaine Rich, and Nair B. "Artificial Intelligence", McGraw Hill, 2008 trick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006							
Edu 2. Kev 3. Pat 4. Dee	vin Night, Elaine Rich, and Nair B. "Artificial Intelligence", McGraw Hill, 2008							

- 5. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 6. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 7. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014
- 8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.

9. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016 CO-PO Mapping

COs						P	Os						PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	1	3	2	1	1	3	1	2	3	3	3	
2	3	3	2	1	3	2	1	1	3	1	2	2	3	3	
3	3	3	2	1	3	2	1	1	3	1	2	2	3	3	
4	3	3	2	1	3	2	1	1	3	1	2	2	3	3	
5	3	3	2	1	3	2	1	1	3	1	2	2	3	3	
Avg	3	3	2	1	3	2	1	1	3	1	2	3	3	3	

1 - Slight, 2 - Moderate,	3 – Substantial
---------------------------	-----------------

	ELECTRIC AND FUEL CELL VEHICLES	L 3	<u>Т</u> 0	P 0	C 3
COURSE	OBJECTIVES:	•	U	•	U
	describe the different types and working principle of batteries	use	d in	Elec	tric
	nicles.				
2. To	demonstrate the thermal and water management of the fuel	l cell	and	d sel	ect
sui	table mechanism to store hydrogen.				
3. To	illustrate the structure of fuel cell and types and working principle	le of	fuel	cells	
	develop the power requirement for Electric and Fuel cell vehicle				
	select suitable design for construct the Electric and Fuel cell vel	hicle	-		
UNIT - I	ELECTRIC VEHICLES				9
	n - Benefits and Challenges in EV – Types of Electric Vehicles				
	The IC Engine/Electric Hybrid Vehicle, EVs using Supply Lines				
	Battery -Battery Parameters, Lead Acid Batteries, Nickel-Based B		ies,	Sodi	un
	atteries, Lithium Batteries, Metal–Air Batteries, Battery Modelling	j .			
UNIT - II	FUEL CELLS				9
	n - Hydrogen Fuel Cells – Basic Principles - Fuel Cell Thermoo				
	- Water Management in the PEMFC - Thermal Management				
	Efficiency of Fuel Cells. Hydrogen as a Fuel - Fuel Reform	•		•	a
	gas, Liquid Hydrogen, Metal Hydride Hydrogen Stores, Carbon	Nand	ofibe	rs.	
UNIT - III	STRUCTURE AND TYPES OF FUEL CELL				ļ
	cture - Fuel Cell Stacking - Planar-Bipolar Stacking - Stacks wit				
	Systems. Fuel Cell Types - Polymer Electrolyte Fuel Cell (PEF)				
), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Ce		CFC), 50	
	I Cell (SOFC). MODELLING OF ELECTRIC & FUEL CELL VEHICLE				g
-	Effort, Modelling Vehicle Acceleration -Electric Scooter & Pa	2000	aar	Cor	_
	Electric Vehicle Range - Driving Cycles, Range Modelling of E		<u> </u>		•
•	Constant Velocity Range Modelling, Range Modelling of Fuel		•		
	delling of Hybrid Electric Vehicles – Computer coding.	0011	101	10100	,
	DESIGN CONSIDERATION				g
	n - Design Consideration: Aerodynamic, Rolling Resistanc	е. Т	rans	miss	ioi
	Vehicle Mass. Electric Vehicle Chassis and Body Design - Bod				
	ents, Body/Chassis Layout, Body/Chassis Strength, Rigio	•			asl
Resistanc	e, Designing for Stability, Suspension for Electric Vehicles, Chas	ssis u	ised	in	
	uel Cell Electric Vehicles, Software in the use of Electric Vehicle				
	ΤΟΤΑ	L: 4	5 PE	RIO	D
	OUTCOMES:				
COURSE					
	pletion of the course, the students will be able to				
Upon com	pletion of the course, the students will be able to Describe the different types and working Principle batteries use	ed in	Eleo	ctric	
		ed in	Eleo	ctric	
Upon com CO1	Describe the different types and working Principle batteries us				
Upon com CO1 CO2	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen.	ell an	d se	lect	
Upon com CO1 CO2 CO3	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip	ell an ple o	d se	lect	s.
Upon com CO1 CO2 CO3 CO4	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic	ell an ple o le	d se f fue	lect	s.
Upon com CO1 CO2 CO3 CO4 CO5	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic	ell an ple o le	d se f fue	lect	S.
Upon com CO1 CO2 CO3 CO4 CO5 TEXT BO	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic DKS:	ell an ple o le ehicl	d se f fue e	lect I cell	
Upon com CO1 CO2 CO3 CO4 CO5 TEXT BO 1. James	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic DKS: Larminie, John Lowry "Electric Vehicle Technology Explained"	ell an ple o le ehicl	d se f fue e	lect I cell	
Upon com CO1 CO2 CO3 CO4 CO5 TEXT BO 1. James Sons,	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic DKS: Larminie, John Lowry "Electric Vehicle Technology Explained" Ltd., Publication.	ell an ple o le ehicl	d se f fue e	lect I cell	
Upon com CO1 CO2 CO3 CO4 CO5 TEXT BO 1. James Sons, 2. "Hybrid	Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic DKS: Larminie, John Lowry "Electric Vehicle Technology Explained" Ltd., Publication. d & Electric Vehicles" by CRC Press, Taylor & Francis.	ell an <u>ple o</u> le ehicl ' A Jo	d se f fue e	lect I cell Wile	/ 8
Upon com CO1 CO2 CO3 CO4 CO5 TEXT BO 1. James Sons, 2. "Hybrid 3. Fuel (Describe the different types and working Principle batteries use vehicles Demonstrate the thermal and water management of the fuel ce suitable mechanism to store hydrogen. Illustrate the structure of fuel cell and types and working princip Develop the power requirement for Electric and Fuel cell vehic Select suitable design for construct the Electric and Fuel cell vehic DKS: Larminie, John Lowry "Electric Vehicle Technology Explained" Ltd., Publication.	ell an <u>ple o</u> le ehicl ' A Jo	d se f fue e	lect I cell Wile	/ 4

- 1. Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure
- 2. and the Market Gianfranco Pistoia Consultant, Rome, Italy, Elsevier Publications,2017
- Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC
 Press 2009
- 4. Press, 2009.
- 5. Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012
- 6. Jack Erjavec and Jeff Arias, "Alternative Fuel Technology Electric, Hybrid and Fuel Cell Vehicles", Cengage Learning Pvt. Ltd., New Delhi, 2007.

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	-	2	2	2	1	1	-	3	3	3
2	3	3	3	2	-	2	2	2	1	1	-	3	3	3
3	3	3	3	2	-	2	2	2	1	1	-	3	3	3
4	3	3	3	2	2	2	2	2	1	1	-	3	3	3
5	3	3	3	2	2	2	2	2	1	1	-	3	3	3
Avg	3	3	3	2	2	2	2	2	1	1	-	3	3	3

VERTICALS-V: ADVANCE TECHNOLOGIES

AU23024	NANOSCIENCE TECHNOLOGY	L 3	T	P	C 3
	OBJECTIVES:	3	0	0	3
1. To	familiarize about the science behind the nanomaterials and val	rious	s type	es na	ano
	terials demonstrate various technique to prepare the nanomaterials				
	select the Nanomaterial in the basics of Electrical, Mechanic	- I C	horr	nala	nd
	gnetic Behavior	ai, i	nen		inu
	develop knowledge in the field of nanomaterial Characterization	n			
	Apply the concepts of Nano materials in the field of automobil		nd ir	ndust	rial
	plications.				
	INTRODUCTION TO NANOSCIENCE AND TYPES				9
	Science and Technology - Implications for Physics, Chemis	try,	Biolo	ogy a	and
	g- Classifications of nanostructured materials- nano particles				
	ultra-thin films- multilayered materials. Types of Nanomateria				
	ions, thin film, Nanocomposites (Metal Oxide and Polymer ba				
	ure, Buckyballs, Carbon nano tubes and, Zeolites minera				
	Liposomes, Block Copolymers, Porous Materials, Meta	I N	anoo	crysta	als,
	uctor nanomaterials.				
	METHODS OF PREPARATION		N 4		9
•	Synthesis-Top-down Approach: Co-Precipitation, Ultrasonical				
•	Illoidal routes, Self-assembly, Vapour phase deposition, MO		•		-
	n, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE, F	note	mino	grap	ny,
	eam lithography.				•
	PROPERTIES OF NANO MATERIALS Property - Electrical and electronic conductivity- Hall effect and in	to de	torm	inoti	9
	Properties: Kinds of dielectric materials, Dielectric constant and				
	electric, pyroelectric and ferroelectric materials. Option			perti	
Photocond			oper	•	of.
	ictor nanoparticles, Mechanical behaviour Stress-strain, t				
	, micro-hardness, wear resistance, corrosion resistance				
	ials. Thermal properties: Heat capacity, thermal conductiv				
	of nanomaterials. Magnetic properties: Fundamentals of magn				
kinds of n	nagnetic materials: dia, para, ferro, ferri and anti-ferromagr	netic	mat	terial	s -
Magnetic	hysteresis - Super paramagnetism - Important properties	s in	rela	ation	to
Nanomagr					
	CHARACTERIZATION TECHNIQUES				9
	characterization techniques - X-ray diffraction (XRD) techniq				
	ion using XRD, Optical and Electron Microscopy - Scanning Elec				
	ion Electron Microscopy, Scanning Tunneling Microscopy				
	s - UV visible spectroscopy, Infrared Spectroscopy and Fo				
	pectroscopy, Raman Spectroscopy, Photoluminescence (PL				
•	ppy (X-Ray Photoelectron Spectroscopy, Auger Electron Spec coelectron Spectroscopy)	lioso	зору	αU	ma
	APPLICATIONS				9
	Tech: Information storage- nano computer, molecular swit	ch	SUD	er cł	
	I, Nano biotechnology: nanoprobes in medical diagnostics an				
	icines, Targeted drug delivery, Bioimaging - Micro Electro Mec				
	Iano Electro Mechanical Systems (NEMS)- Nanosensors, nano				
	al inhibition, Nanoparticles for sun barrier products - In Photost				
cell, batter	•	1		U, -1	
· · · · ·	ΤΟΤΑ	1 • 4	5 PF		ns

r	
COURSE	OUTCOMES:
Upon com	pletion of the course, the students will be able to
CO1	Familiarize about the science of nanomaterials and various types nano materials
CO2	Demonstrate various technique to prepare the nanomaterials
CO3	Select the Nanomaterial in the basics of Electrical, Mechanical, Thermal and Magnetic Behavior.
CO4	Develop knowledge in the field of nanomaterial Characterization
CO5	Apply the concepts of Nano materials in the field of automobile and industrial applications
TEXT BO	OKS:
Applica	delstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and ations", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
	n Dinardo, "Nanoscale Characterization of surfaces & Interfaces", 2nd edition, eim Cambridge, Wiley-VCH, 2000.
Univer	INDSAY, "Introduction to Nanoscience" Arizona State University, Oxford sity Press, 1stedition 2010.
REFEREN	ICES:

- 1. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.
- 2. G Timp, "Nanotechnology", AIP press/Springer, 1999.

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	-	1	1	1	1	1	-	3	3	3
2	3	3	3	2	-	1	1	1	1	1	-	3	3	3
3	3	3	3	2	-	1	1	1	1	1	-	3	3	3
4	3	3	3	2	-	1	1	1	1	1	-	3	3	3
5	3	3	3	2	-	1	1	1	1	1	-	3	3	3
Avg	3	3	3	2	-	1	1	1	1	1	-	3	3	3

AU23025	MANUFACTURING OF AUTOMOTIVE COMPONENTS	L 3	<u>Т</u> 0	P 0	C 3
COURSE	OBJECTIVES:		•	•	
The main I	earning objective of this course is to prepare the students				
1. To	compare and analyse the different casting process.				
2. To	design various machining process according to the requirement	nt.			
	Analyse the suitable process related to forming.				
4. To	differentiate the effect of powder metallurgy on selective compo	onent	s.		
5. To	impart knowledge on recent trends of automotive components.				
UNIT - I	CASTING				9
•	nsideration of machining of various components such as flywh	neel,	pisto	n rin	gs,
	shes, and liners, permanent mould casting of piston.				
UNIT - II	MACHINING				9
	aterials - process flow chart, forging of valves, connecting rod,				
	eller shaft, transmission gear blanks, steering column. Extrusion				
	usion of transmission shaft, housing spindle, steering worm b				
	appets. Hydro forming - Process, hydro forming of manifold and		•		
	al methods- Hydro forming of tail lamp housing – forming of wh				
	ming - Process, stretch forming of auto body panels –Super plas	stic al	loys	for a	uto
oody pane					
JNIT - III	FORGING AND EXTRUSION PROCESS				g
	aterials - process flow chart, forging of valves, connecting rod,				
	eller shaft, transmission gear blanks, steering column. Extrusion				
•	usion of transmission shaft, housing spindle, steering worm to				
	appets. Hydro forming - Process, hydro forming of manifold and al methods- Hydro forming of tail lamp housing – forming of wh				
	ming - Process, stretch forming of auto body panels –Super plas				
body pane		suc ai	1093	ioi a	uit
UNIT -IV	POWDER METALLURGY AND PROCESSING OF PLASTIC	S			9
	etallurgy process, process variables, Manufacture of friction li		mate	rials	
	nd brakes – plastics-raw material –automobile components – m				
	on and blow – PU foam molding - Machining of plastics.		9		
UNIT - V	RECENT TRENDS IN MANUFACTURING OF AUTO COMPO		ITS		9
	ection moulding - Production of aluminium MMC liners for engin			Plas	
	ed engine blocks and valves - Recent developments in auto bo				
	Casting of pistons - aluminium composite brake rotors. Sinter				
dler sproc	ket – gas injection moulding of window channel – cast con proc				
	ΤΟΤΛ	AL: 4	5 PE	RIO	DS
	OUTCOMES:				
	pletion of the course, the students will be able to				
CO1	Identify the methods to manufacture the vehicle components.				
CO2	Analyze the requirements of each component and material.				
CO3	Differentiate between the casting and forming process.				
CO4	Design the process for manufacturing vehicle components.				
	Understand the advanced techniques used for manufacturing components.	Auto	mobi	le	
CO5					
	KS				
	Heldt. P.M., " High Speed Combustion Engines ", Oxford Pub	olishin	ig Co	o., N	e٧
TEXTBOC 1. A H You	Heldt. P.M., "High Speed Combustion Engines ", Oxford Pub k, 1990.		•		
TEXTBOO 1. A H Yoi 2. Rus	Heldt. P.M., " High Speed Combustion Engines ", Oxford Pub		•		

- 1. Haslehurst.S.E., " Manufacturing Technology ", ELBS, London, 1990.
- 2. High Velocity "Forming of Metals ", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990 HMT handbook
- 3. Sabroff.A.M. & Others, "Forging Materials & Processes ", Reinhold Book Corporation, New York, 1988.
- 4. Upton, "Pressure Die Casting ", Pergamon Press, 1985.

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	3	2	1	1	3	1	2	3	3	3
2	3	3	2	1	3	2	1	1	3	1	2	2	3	3
3	3	3	2	1	3	2	1	1	3	1	2	2	3	3
4	3	3	2	1	3	2	1	1	3	1	2	2	3	3
5	3	3	2	1	3	2	1	1	3	1	2	2	3	3
Avg	3	3	2	1	3	2	1	1	3	1	2	3	3	3

AU23026	IOT FOR ELECTRIC VEHICLES	L 3	Т 0	P 0	C 3
COURSE O	BJECTIVES:		•	•	•
	arning objective of this course is to prepare the students				
1. To d	esign and drive the mathematical model of a BLDC motor and	its ch	arac	terist	tics
2. To le	earn the different control schemes for BLDC motor				
3. To s	tudy the basics of fuzzy logic				
	tudy the FPGA & VHDL basics				
5. To ir	nplement fuzzy logic control of BLDC motor in real time				
UNIT - I	MATHEMATICAL MODEL AND CHARACTERISTICS ANA THE BLDC MOTOR	LYSI	S O	F	9
	nd Drive Modes - Basic Structure, General Design Metho				
	al Model, Differential Equations, Transfer Functions, State-S				
	tics Analysis, Starting Characteristics, Steady-State Ope	ratio	n, E	Dynar	mic
	tics, Load Matching Commutation Transients				1
UNIT - II	SPEED CONTROL FOR ELECTRIC DRIVES				9
	-PID Control Principle, Anti windup Controller, Intelligent (Contr	oller.	Vec	ctor
	ntrol applied to BLDC motor used in EV.				r
UNIT - III	FUZZY LOGIC				9
	o functions: features, fuzzification, methods of membership va				
	ion: lambda cuts - methods - fuzzy arithmetic and fuzzy				
	extension principle - fuzzy measures - measures of fuzziness				
	ase and approximate reasoning : truth values and tables, fu				
	rules decomposition of rules, aggregation of fuzzy rules, fuzzy		sonir	ng-fu	zzy
	vstems, overview of fuzzy expert system-fuzzy decision makin	g.			1
UNIT -IV	FPGA AND VHDL BASICS				9
Introduction	- FPGA Architecture-Advantages-Review of FPGA family pro	cess	ors-	Spar	tan
	6 and Spartan 7. VHDL Basics- Fundamentals-Instruction				
	statements- programs like arithmetic, sorting, PWM ge	nera	tion,	Spe	eed
detection.					
UNIT - V			- f		9
	ign, identifying rotor position via hall effect sensors, open loc V BLDC motor using FPGA-real-time monitoring of the health				
	TOT	<u> </u>	5 PF		DS
	UTCOMES:		<u> </u>		
	letion of the course, the students will be able to				
	To design the mathematical model of a BLDC motor and to o	liscu	ss af	out i	ts
CO1	characteristics To demonstrate the PID control, ant windup controller, Intelli				
CO2	and Vector Control. Control applied to BLDC motor.	yem	COI		•
CO3	To illustrate the basics of fuzzy logic system				
CO4	To describe the basics of VHDL & FPGA applied to control of	f =\//			
	To design and implement of fuzzy logic control scheme for B			or	
CO5	using FPGA in real time.		mot		
REFERENC					
	Powertrain Energy Systems, Power Electronics and Drives for				ΊC
	l Cell Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1st I				
	rimer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1 st Edi				
	ussain, "Electric and Hybrid Vehicles: Design Fundamentals	, Thi	rd E	ditio	n"
	ess, Taylor & Francis Group, 2021, 1st Edition.				
	iang, Permanent Magnet Brushless DC Motor Drives and Co	ntrols	, Xia	ı Wile	∋у
2012.1s	t Edition.				

5. M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes publications, 1st Edition, 2002.

6. Wei Liu, Hybrid Electric Vehicle System Modeling and Control, Wiley 2017, 2nd Edition

7. Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi • Robert Shorten, Sonja Stüdli • Fabian Wirth, CRC Press, 1st Edition. 2018.

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8 9 10 11 12	1	2				
1	3	3	3	3	2	1	1	3	1	2	1	3	3	3
2	3	3	3	3	2	1	1	3	1	2	1	3	3	3
3	3	3	3	3	2	1	1	3	1	2	1	3	3	3
4	3	3	3	3	2	1	1	3	1	2	1	3	3	3
5	3	3	3	3	2	1	1	3	1	2	1	3	3	3
Avg	3	3	3	3	2	1	1	3	1	2	1	3	3	3

AU23027	HOMOLOGATION AND CERTIFICATION	L T P C 3 0 0 3
COURSE OB	JECTIVES:	
The main lear	ning objective of this course is to prepare the students	
1. Under	standing of certification practices.	
2. Analyz	zing the of limits.	
3. Under	standing of Engine testing.	
4. Under	standing of vehicle testing.	
5. Applyi	ng standards followed in automobile industry for th	eir testing and
homol	ogation.	-
UNIT - I	INTRODUCTION	9
Need of veh	cle testing and homologation, Vehicle testing organizatio	ns, Hierarchy of
testing: Indivi	dual component approval, System level approval and Whole	vehicle approval.
	al & Conformity of Production tests, Approval for Safety sy	
Passive).		Υ.
UNIT - İI	ENGINE, FUEL SYSTEMS AND EMISSIONS TESTING	9
Laboratory te	sting of basic engine parameters: Measurement of BHP, IHI	P, Engine testing
	eters, different types of dynamometers hydraulic, eddy cur	
	petrol and diesel engines, FIP calibrating and testing. Emis	
•	2, PM, etc. using exhaust gas analyzers, Spectroscopic meth	
	frared), FID (Flame Ionization Detector), chemiluminescent	
	oh, Smoke meters. Emission testing on chassis dyname	
•	Japan, Euro and India. Test procedures - European driving	
•	g Cycle, SHED (Sealed Housing for. Evaporative Determ	-
chassis dyna		
UNIT - III	NOISE VIBRATION AND HARSHNESS TESTING	9
	se measurement methods, Noise inside and outside the ve	-
	- intake and exhaust noise, combustion noise, mechanical r	-
	ind noises, transmission noises, brake squeal, structure	
	ds. Pass by Noise testing method.	
UNIT -IV	VEHICLE PERFORMANCE TESTING	9
Methods for	evaluating vehicle performance - energy consumption	in conventional
	performance, and emission and fuel economy, Operation of	
	s. Gradability test, Turning circle diameter test, Steering Imp	•
	ad and track testing: Maximum speed and acceleration, br	
	ndling and ride characteristics. Track testing on Multi Frictic	
	rack, Wet skid pad, Test slopes, External noise test track, Ac	
	wade, Salt-water wade, and Gravel Road and off-road tra	
circuit, Comfo	rt track.	
UNIT - V	AUTOMOBILE TESTING STANDARDS	9
Introduction,	overview and study of testing standards like; AIS testing	standards, Euro
	AE standards. ISO26262 standards for functional safety of	
	stems in automobiles. Understanding of some AIS Sta	
(Installation re	equirements of lighting and light-signalling devices for moto	r vehicles having
	ee wheels, trailer and semi- Trailer excluding agricultural tra	
purpose veh	cles), AIS-018:2001 (Automotive Vehicles - Speed limit	ation Devices -
), AIS-037 (Procedure for Type Approval and establishing	
	safety of critical components), AIS093 (Code of practice for	
	uck cabs & truck bodies), AIS-003 (Automotive Vehicles - Sta	
	leasurement and Requirements), AIS-038 (Battery Oper	ated Vehicles -
Requirements	s for Construction and Functional Safety).	
	ΤΟΤΑ	AL: 45 PERIODS

COURSE OU	JTCOMES:											
Upon comple	Upon completion of the course, the students will be able to											
CO1	D1 Recall the need of vehicle testing and homologation.											
CO2	Apply fundamental knowledge to measure the emissions and calculate the vehicle performance with reference to standard reference conditions.											
CO3	Identify the testing procedures of evaluating the vehicle performance, road test and track test.											
CO4	Understand standard procedures for vehicle certification and approval as per rules and regulations.											
CO5	Interpret and understand various automotive testing standards.											
-	CO5 Interpret and understand various automotive testing standards. REFERENCES: 1. Raymond M. Brach and R. Matthew Brach, "Vehicle Accident Analysis and											

- 1. Raymond M. Brach and R. Matthew Brach, "Vehicle Accident Analysis and Reconstruction
- 2. Methods", SAE International, 2011
- 3. J. G. Giles Vehicle operation and performance, Wildlife Publications, London, 1969.
- 4. W. H. Crouse and L. Anglin Motor vehicle inspection, McGraw Hill Book Co. 1978.
- 5. Dr. N.K. Giri- Automotive technology Khanna publishers, 2009
- 6. Ulrich Seiffert and Lothar Wech, "Automotive Safety Handbook", SAE International, 2007 ISO Standards, ICS: 43.020, 43.040, 43.100
- 7. Indian emission Standards.

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	2	3	2	1	2	2	2	1	3	3	3
2	3	3	2	2	3	2	1	2	2	2	1	3	3	3
3	3	3	2	2	3	2	1	2	2	2	1	3	3	3
4	3	3	2	2	3	2	1	2	2	2	1	3	3	3
5	3	3	2	2	3	2	1	2	2	2	1	3	3	3
Avg	3	3	2	2	3	2	1	2	2	2	1	3	3	3

MF23C01	ADDITIVE MANUFACTURING	L T 3 0	P 0	C 3							
COURSE O	BJECTIVES:	5 0	v	5							
	arning objective of this course is to prepare the students										
	amiliarize various design considerations, software tools, proce	esses, ar	d								
	niques to create physical components using AM.										
	nhance product customization for suitable AM techniques										
	npart knowledge on Medical and Industrial applications of AN										
UNIT - I	INTRODUCTION			9							
Overview -	Distinction between traditional manufacturing and AM - Evo	olution of	Addit	ive							
	ng (AM) - AM Process workflow - Classification – Benefits. Al										
	ons-Business and Societal Implications of AM -Economic asp										
UNIT - II	DESIGN FOR ADDITIVE MANUFACTURING (DFAM)			9							
AM Unique	Capabilities- Need for DFAM- Design consideration in AM- Pa	art Conso	lidatio	n -							
•	ptimization- Generative Design- Lightweight Structure - DFA										
	nt. CAD Model Preparation - File formats for AM (STL, PLY, V			-							
	and Support Structure Generation - Model Slicing - Tool Path										
	PHOTO POLYMERIZATION, MATERIAL EXTRUSION, AN										
UNIT - III	BED FUSION PROCESSES			9							
Photo poly	merization: Stereolithography Apparatus (SLA) - Materia	als - P	rocess	; -							
	- Applications. Digital Light Processing (DLP) - Materi										
	- Applications. Continuous Liquid Interface Production (CI										
	Capabilities and Applications. Extrusion Based System: F										
	DM) - Process – Types- Materials - Applications. Powder Bed										
	ing (SLS): Process – Materials and Application. Multijet fusion										
Melting (SLM) and Electron Beam Melting (EBM): Materials - Principle - Process -											
Capabilities and Applications.											
UNIT JV SHEET LAMINATION, DIRECT ENERGY DEPOSITION, BINDER AND											
	MATERIAL JETTING PROCESSES			-							
	nation Process: Laminated Object Manufacturing (LOM) ·										
	Gluing or Adhesive Bonding - Thermal Bonding- Material										
	irect Energy Deposition Process: Laser Engineered Net Sha										
	ditive Manufacturing (WAAM) - Process -Material Delivery - Pr										
	Capabilities - Industrial Applications. Binder and Materia										
	I Printing - Materials - Physics of 3DP – Process- Types of pl	•									
•	and Application. Hybrid Additive Manufacturing - Need - Pri	nciples -	Syne	rgy							
	A Materials - Part Quality and Process Efficiency.										
UNIT - V	APPLICATION OF AM			9							
	g - Direct tooling - Indirect tooling – Soft tooling- bridge tooli										
	ent Casting, sand casting, Injection moulding. Case St										
	and automotive industries, Medical and healthcare -										
	- Food Printing -Printing Electronics - Consumer products and the second sec	nd fashio	n. Hea	alth							
and safety r	equirements. Hazards and risks involved.										
		AL: 45 F	ERIO	DS							
	UTCOMES:										
Opon comp	etion of the course, the students will be able to	alonmo	at and								
CO1	Gain an understanding of Additive Manufacturing and its devidentify different hubiness apportunities appointed with Add	•	n and								
CO1	identify different business opportunities associated with Add	inve									
	Manufacturing.	otiona a	o olfic	to							
CO2	Develop a comprehensive understanding of design consider										
	Additive Manufacturing and familiarize oneself with a range	UI SUILWE	ue 100	15							
002											
	used in the design process for Additive Manufacturing.										
CO3											

CO4	Acquire knowledge on process and applications of sheet lamination, direct energy deposition, Binder and Material Jetting Processes and introduce the concept of hybrid Additive Manufacturing processes that combine multiple techniques to achieve desired outcomes.
CO5	Achieve in-depth knowledge of Rapid Tooling techniques in Additive Manufacturing and explore case studies and industrial applications of AM
TEVT	BOOKS:
1.	Gibson, Ian, David Rosen, Brent Stucker, Mahyar Khorasani, "Design for additive
	manufacturing", Additive manufacturing technologies (2021), ISBN: 978-3-030-
0	56126-0.
2.	Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for
	Prototyping and Manufacturing", Hanser publications, United States, 2016, ISBN:
	978-1-56990-582-1.
REFE	RENCES:
1.	Diegel, Olaf, Axel Nordin, and Damien Motte, "A Practical Guide to Design for
	Additive Manufacturing", Springer, 2020.
2.	Amit Bandyopadhyay, Susmita Bose, "Additive Manufacturing, Second Edition",
	CRC Press Taylor and Francis Group, 2020, ISBN- 978-1-4822-2360-6.
3.	Redwood, Ben, Filemon Schoffer, and Brian Garret, "The 3D Printing Handbook:
	Technologies, Design and Applications", 3D Hubs, 2017.
4.	C.P Paul, A.N Junoop, "Additive Manufacturing: Principles, Technologies and
	Applications", McGraw Hill, 2021.

COs						P	Os						PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2	2	1	1	1	2	1	1	1	1	3	3	3	
2	3	2	2	1	1	1	2	1	1	1	1	3	3	3	
3	3	2	2	1	1	1	2	1	1	1	1	3	3	3	
4	3	2	2	1	1	1	2	1	1	1	1	3	3	3	
5	3	2	2	1	1	1	2	1	1	1	1	3	3	3	
Avg	3	2	2	1	1	1	2	1	1	1	1	3	3	3	

AU23028	RENEWABLE SOURCES OF ENERGY	L 3	T 0	P 0	C 3
COURSE	OBJECTIVES:		•	•	Ŭ
The object	ive of the courses is to develop in-depth knowledge for the follo	wing:			
1. Va	ious renewable energy resources available at a location and a	ssessr	nen	ts of	
its	potential, using tools and techniques.				
	ar energy radiation, its interactions, measurement and estimati				
	perties critical for Bio-energy resource assessment, pathway s	electic	on,		
	mass supply				
	e selection for wind turbines, wind systems, measurements and	linstru	ıme	nts	
	othermal, wave, tidal and OTEC resources, site selection				1
UNIT - I	INTRODUCTION TO RENEWABLE ENERGY SOURCES				9
	rgy usage -reserves for world energy resources. Principles of r				
	le energy resources and their importance. Conventional and				
	iew of possible renewable energy resources. Scientific prir	nciples	s, te	cnni	cal
	s, and social implications.				•
	SOLAR ENERGY ation: Extraterrestrial solar radiation - Measurement and es	timeti	20	of ac	9
	Solar heating devices. Systems with separate storage. Selectiv				
	ors and other devices. Systems with separate storage. Selectiv				
	ents in solar power generation. Photovoltaic Devices and Sys				
	photovoltaic systems. Grid connection; system design and RA				
	ply) applications.	10 (10			ea
UNIT - III	BIOMASS AND BIOENERGY				9
-	esources - Reviews the use of agricultural crops and solid biom	ass w	aste	s in f	-
	of alternative fuels. Available Technologies for biomass er				
	n, pyrolysis, gasification and other thermo-chemical process				
	duction technologies. Recent advancements in Biomass energy				
	WIND ENERGY	<u>, </u>		••••	9
-	Vind Energy. Current and Future Technologies - Benefits and Di	awba	cks	of W	-
	Vind Turbine and its components- Loads on the wind turbine. I				
•••	nes and calculation of wind turbine efficiency. Process of elec			•	
	to the grid (wind farms). Current and Potential Uses - Issues,	•	•		
Obstacles.			Ũ		
UNIT - V	OTHER RENEWABLE ENERGIES				9
Introductio	n to Geothermal, Ocean thermal and tidal energies. Work	ing p	rinc	iples	of
Geotherma	al, Ocean thermal and tidal power plants. Binary cycle po	ower	gen	erati	on.
Advantage	s and drawbacks. Current trends in geothermal, ocean therma	al and	tida	l pov	ver
technologi					
		AL: 45	5 PE	RIO	DS
	OUTCOMES:				
Upon com	pletion of the course, the students will be able to	<u> </u>			
CO1	Know the importance of renewable energy sources utilization	and va	ario	JS	
	renewable energy technologies.				
000	Describe the use of solar energy and the various components			ne	
CO2	energy production with respect to applications like - heating, c	ooling	,		
	desalination, power generation, drying, cooking etc.	vir olor	oif:		<u> </u>
CO3	Understand the concept of Biomass energy resources and the	er clas	SIII	allor	Ι,
	types of biogas Plants- applications	onto	204	in	
CO4	Appreciate the need of Wind Energy and the various compone	FILS US	sed	111	
	energy generation and know the classifications. Acquire the knowledge of wave power, tidal power and geothe	rmol	orin	ciplor	-
CO5	and applications.	mai		cipies	5
	מות מצרווטמווטווס.				

TEXTBOOKS:

1. G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.

2. Twidell, J.W. & Weir, A., "Renewable Energy Resources", EFN Spon Ltd., UK, 2005. FERENCES:

REFERENCES:

- 1. B.H. Khan, "Non-Conventional Energy Resources", The McGraw Hill companies, 2009
- 2. G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.
- 3. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 4. J. Dewulf and Herman Van Langenhove, 'Renewables Based Technology: Sustainability Assessment'. 2006 John Wiley & Sons, Ltd. ISBN: 0-470-02241-8
- 5. Neil Schlager and Jayne Weisblatt, Alternative Energy, Thomson Gale sales ISBN 1- 4414-0507 3, 2006

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	3	1	2	1	1	3	3	3
2	3	3	3	3	3	2	3	1	2	1	1	3	3	3
3	3	3	3	3	3	2	3	1	2	1	1	3	3	3
4	3	3	3	3	3	2	3	1	2	1	1	3	3	3
5	3	3	3	3	3	2	3	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	3	1	2	1	1	3	3	3

VERTICALS-VI: DIVERSIFIED TECHNOLOGIES

AU23029	PRINCIPLES OF CONTROL SYSTEMS	L 3	Т 0	P 0	C 3
COURSE	OBJECTIVES:	-		Ū	
The object	ive of the courses is to develop in-depth knowledge for the follo	wing	:		
	understand the methods of representation of system and their t	rans	fer fu	Inctic	n
	dels				
	provide adequate knowledge in the time response of systems a or analysis	ind s	tead	y sta	te
	give basic knowledge in obtaining the open loop and closed loc ponses of systems	p fre	quer	псу	
4. To	understand the concept of stability of control system and metho	ods o	f sta	bility	
	study the three-way of designing compensators for a control sy	stem			
UNIT - I	SYSTEM AND THER REPRESENTATION				9
characteris mechanica servomoto	ments in control systems-Open loop and Closed loop s stics- Effects of feedback-mathematical modelling of phys al, Thermal, hydraulic and Pneumatic systems -Transfer funct r- Block diagram reduction techniques- signal flow graph- ts – computer simulation.	ical	syst AC a	tems and	: - DC
UNIT - II	TIME RESPONSE ANALYSIS				9
Generalize	onse- Types of test inputs- First and second order responses- ed error series- Steady state error- Time domain specifications- ive domain- Computer simulation.				
	FREQUENCY RESPONSE ANALYSIS				9
	response- Frequency domain specifications-Bode Plot-Polar pl	ot- D	otorr	ninat	-
	nargin and gain margin- Constant M and N circles-Nichols cha				
	pop responses from open loop response- Problems related to au				
	simulation.	.01110		aonne	
UNIT -IV	STABILITY OF CONTROL SYSTEM				9
-	of stability- Location of roots in S-plane for stability- Routh Hurw	itz cr	iteric	on- R	
locus tech	niques- Construction-Nyquist stability criterion- Problems relat Computer simulation.				
UNIT - V					9
networks-	Ilers –Performance criteria- Selection of controller modes-lag, Le Compensator design for desired response using root locus and related to automotive domain -Computer simulation.			•	
	TOTA	\L: 4	5 PE	ERIO	DS
COURSE	OUTCOMES:				
Upon com	pletion of the course, the students will be able to				
CO1	To understand the methods of representation of system and the function models	ieir tr	ansf	er	
CO2	To provide adequate knowledge in the time response of system state error analysis	ns a	nd st	teady	1
CO3	To give basic knowledge in obtaining the open loop and close responses of systems	ool b	p fre	quen	су
CO4	To understand the concept of stability of control system and m stability analysis	etho	ds of	f	
CO5	To study the three ways of designing compensators for a cont	rol sy	/sten	n	
	KS: pal, M., "Control System, Principles and Design", Tata McGraw- tion, New Delhi, 2006.	Hill P	ub. (Co., 2	2nd

2. Nagrath, I.J. and Gopal, M., "Control System Engineering", New Age International(p),4th Edition, Tata McGraw Hill, 2004

REFERENCES:

- 1. Dorf Bishop, "Modern Control System", Prentice Hall, 2004
- Kuo, B.C., "Automatic Control System' Prentice Hall of India Ltd., New Delhi,2003
 Ogata, K., "Modern Control Engineering", Prentice Hall of India Ltd., 4th Edition, New Delhi,2006

CO-PO Mapping

COs						P	Os						PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
2	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
3	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
4	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
5	3	3	3	3	3	2	2	1	2	1	-	3	3	3	
Avg	3	3	3	3	3	2	2	1	2	1	-	3	3	3	

AU23030	NOISE, VIBRATION AND HARSHNESS FOR	L	T	P	C
		3	0	0	3
	BJECTIVES:				
	arning objective of this course is to prepare the students for	ıt dar	nnin	~	
	erstand the various types of vibration with damping and withou erstand the Various types of noise and its measurement and a			g.	
		naiys	515		
	niques.				
	erstand the various sources of noise from IC engine.	iloo			
	erstand the various noise controlling techniques from automob erstand the various noise from mechanical components and it		nroc	oina	
	niques.	s sup	pres	sing	
UNIT - I	FUNDAMENTALS OF ACOUSTICS AND NOISE, VIBRATION	אר			9
	ound—Predictions and Measurement, Sound Sources, Soun		nea	ation	-
	here, Sound Radiation from Structures and Their Response to				
	to Vibration, Vibration of Simple Discrete and Continuous Sy				
	esponse of Systems to Shock, Passive Damping	ysten	13, 1	anu	5111
UNIT - II	EFFECTS OF NOISE, BLAST, VIBRATION, AND SHOCK O	N PI		LE	9
	oduction to Noise and Vibration Effects on People and Hearing				-
	irbance due to Transportation Noise Exposure, Noise-Indu	•			
	frasound, Low-Frequency Noise, and Ultrasound on People, A				
	and Impact Noise, Effects of Intense Noise on People and Hear				
	on People, Effects of Mechanical Shock on People, R				
	Criteria, and Procedures for Determining Human Response to	<u> </u>		acai	00,
	ENGINE NOISE AND VIBRATION —SOURCES, PREDICTI)	
UNIT - III	CONTROL	ΟN,			9
Introduction	to ENGINE Noise and Vibration Sources, Internal Combusti	on E	ngine	e No	ise
	and Control—Diesel, Exhaust and Intake Noise and Acou				
Mufflers.				U	
UNIT -IV	TRANSPORTATION NOISE AND VIBRATION SOURCES-				9
listra du ation	PREDICTION AND CONTROL		Car	o * o *:	
	to Transportation Noise and Vibration Sources, Tire/Road Noisi ic Sound Sources in Vehicles—Prediction and Control, Tr				,
	ise and Vibration Prediction and Control, Brake Noise Prediction				
Gearbox No	NOISE AND VIBRATION TRANSDUCERS, ANALYSIS, SIC			onuc	л. I
UNIT - V	PROCESSING, AND MEASURING TECHNIQUES	JNAI	-		9
General Intr	oduction to Noise and Vibration Transducers, Measuring Equip	omer	t, No	oise a	and
	easurements, Signal Acquisition, and Processing. Sound Lev				
	Analyzers and Signal Generators, Equipment for D			•	
	on of Sound Power Level and Emission, Sound Intensity Meas				
and Vibratio	n Data Analysis, Calibration of Measurement Microphones, Ca	librat	ion o	f Sho	ock
	ion Transducers, Metrology and Traceability of Vibrati				
Measureme	nts.				
	TOTA	\L: 4	5 PE	RIO	DS
COURSE O	UTCOMES:				
Upon comp	etion of the course, the students will be able to				
CO1	Classify the types of vibrations.				
CO2	Understand the effect of vibrations and noises.				
CO3	Identify the sources of noise in IC engines and how to contro	l it.			
CO4	Control vibration and noise with suitable techniques for Trans		ation		
CO5	Apply engineering techniques and tools for NVH measureme	nts.			
TEXTBOOK	(S:				
	onnell K, "Vibration Testing Theory and Practice", John Wiley,	199	5.		
2. Nort	on M P, Fundamental of Noise				

3. and Vibration, Cambridge University Press, 1989

REFERENCES:

- 1. Ilan G. Piersol, Thomas L. Paez "Harris' shock and vibration hand book", McGraw-Hill, New Delhi, 2010
- 2. Clarence W. de Silva, "Vibration Monitoring, Testing, and Instrumentation ", CRC Press,2007
- 3. David A. Bies and Colin H. Hansen "Engineering Noise Control: Theory and Practice "Spon Press, London. 2009
- 4. Colin H Hansen "Understanding Active Noise Cancellation ", Spon Press, London .2003
- 5. Matthew Harrison "Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles ", Elsevier Butterworth-2004

CO-PO Mapping

COs						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	2	3	3	2	1	1	1	3	3	3
2	3	3	3	3	2	3	3	2	1	1	1	3	3	3
3	3	3	3	3	2	3	3	2	1	1	1	3	3	3
4	3	3	3	3	2	3	3	2	1	1	1	3	3	3
5	3	3	3	3	2	3	3	2	1	1	1	3	3	3
Avg	3	3	3	3	2	3	3	2	1	1	1	3	3	3

	VEHICLE AIR CONDITIONING	L 3	Т 0	<u>Р</u> 0	C 3
	BJECTIVES:	3	V	U	J
	arning objective of this course is to prepare the students for				
	olve the simple problems related to psychrometry and refrigera	nt.			
	nderstand the operation of the individual components of the A/		em.		
	sors, actuators and electronic control.	- ,	. ,		
	nderstand the range of techniques that can be used in diagnos	sina			
	lentify faults which affect system performance.				
	rovide adequate knowledge in safe working practice. Understa	ndin	a the	e	
•	ect procedures for A/C service and repair.		3		
UNIT - I	AUTOMOTIVE AIRCONDITIONING FUNDAMENTALS				9
	f Heating, Ventilation and Air Conditioning- Environmental C	once	erns-	Ozo	one
	ion- Location of air conditioning components in a car – Scher				
	igeration system. Psychrometry – Basic terminology and				
	ychrometric Chart- Related problems.		,		
UNIT - II	AUTOMOTIVE COOLING AND HEATING SYSTEM				9
Vehicle Ref	rigeration System and related problems- Fixed thermostatic	and	Orifi	ce tu	ibe
system- Va	ariable displacement thermostatic and Orifice tube syste	m-	Vehi	icle	air
conditioning	operation Types of compressors- Compressor Clutches- Con	mpre	essor	· Clu	tch
electrical ci	cuit- Compressor lubrication- Condensers- Evaporators- Exp	ansi	on d	levic	es
Evaporator	temperature and pressure controls- receiver-drier- Accumula	ators	- ref	riger	an
	nections and other assemblies-Heating system.			-	
UNIT - III	AIR-CONDITIOING CONTROLS, DELIVERY SYSTEM AND				9
	REFRIGERANTS				9
Types of Co	ontrol devices- Preventing Compressor damage- Preventing of	dama	age t	o ot	hei
systems- Ma	aintaining drive ability- Preventing Overheating Ram air ventilat	tion-	Air [Deliv	ery
Component	s- Control devices- Vacuum Controls Containers – Handlin	g re	frige	rants	5 -
	, Charging & Leak detection - Refrigeration system diagnos	sis –	· Dia	ignos	stic
	Ambient conditions affecting system pressures.				
UNIT -IV	AUTOMATIC TEMPERATURE CONTROL				-
Different typ	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co	ontro			anc
Different typ variable disp	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co blacement temperature control- Semi Automatic- Controller des	ontro			anc
Different typ variable disp	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co	ontro			
Different typ variable disp variable disp	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co blacement temperature control- Semi Automatic- Controller des blacement type air conditioning system.	ontro			and
Different typ variable disp variable disp UNIT - V	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co blacement temperature control- Semi Automatic- Controller des blacement type air conditioning system. SYSTEM SERVICING AND TESTING	ontro ign fo	or Fix	ked a	anc anc 9
Different typ variable disp variable disp UNIT - V Special too	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co blacement temperature control- Semi Automatic- Controller desi blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp	ontro ign fo	or Fix	ked a	anc anc 9 ai
Different typ variable disp variable disp UNIT - V Special too conditioning	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys	ontro ign fo	or Fix	ked a	anc anc 9 ai
Different typ variable disp variable disp UNIT - V Special too conditioning	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature co blacement temperature control- Semi Automatic- Controller desi blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp	ontro ign fo cone tem-	nts Au	ked a and itoma	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con blacement temperature control- Semi Automatic- Controller des blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys e Control system diagnosis and service.	ontro ign fo cone tem-	nts Au	ked a and itoma	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA	ontro ign fo cone tem-	nts Au	ked a and itoma	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature conditional control - Semi Automatic - Controller designation of the service of the service of the servicing system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing composite systems - Diagnosing cooling system - Air delivery system control system diagnosis and service. TOTA UTCOMES:	ontro ign fo cone tem-	nts Au 5 PE	ked a and itoma	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature conclusion of the course, the students will be able to	ontro ign fo bone tem- L: 4	nts Au 5 PE	and itoma	anc anc 9 aii atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon comp	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing composite systems- Diagnosing cooling system- Air delivery system e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrigu	ontro ign fo bone tem- L: 4	nts Au 5 PE	and itoma	and and 9 aii atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the	ontro ign fo bone tem- tem- L: 4	nts Au 5 PE	and itoma	and and 9 aii atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrigu- Understand the operation of the individual components of the sensors, actuators and electronic control	ontro ign fo bone tem- tem- L: 4 <u>eran</u>	nts Au 5 PE	and itoma	anc anc 9 aii atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3 CO4	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagr	ontro ign fo bone tem- L: 4 eran A/S	nts Au 5 PE	and itoma RIO m,	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3 CO4	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing composite systems- Diagnosing cooling system- Air delivery systems- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refriguent Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagon Identify faults which affect system performance	ontro ign fo bone tem- L: 4 eran A/S	nts Au 5 PE	and itoma RIO m,	anc anc anc anc anc anc
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp- systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagr Identify faults which affect system performance Provide adequate knowledge in safe working practice. Underst correct procedures for A/C service and repair	ontro ign fo bone tem- L: 4 eran A/S	nts Au 5 PE	and itoma RIO m,	anc anc 9 ai atic
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3 CO3 CO4 CO5 TEXTBOOF	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp- systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagr Identify faults which affect system performance Provide adequate knowledge in safe working practice. Underst correct procedures for A/C service and repair	ontro ign fo bone tem- tem- L: 4 A/S	nts Au 5 PE	and itoma RIO m, the	anc anc ai atic DS
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3 CO4 CO5 TEXTBOOP 1. War	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp- systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagr Identify faults which affect system performance Provide adequate knowledge in safe working practice. Underst correct procedures for A/C service and repair (S:	ontro ign fo bone tem- tem- L: 4 <u>eran</u> A/S nosir stand	nts Au 5 PE	and itoma RIO m, the	anc anc ai atic DS
Different typ variable disp variable disp UNIT - V Special too conditioning Temperatur COURSE O Upon compl CO1 CO2 CO3 CO4 CO5 TEXTBOOP 1. Warn Cond	AUTOMATIC TEMPERATURE CONTROL bes of sensors and actuators used in automatic temperature con- blacement temperature control- Semi Automatic- Controller desi- blacement type air conditioning system. SYSTEM SERVICING AND TESTING Is for servicing vehicle air conditioning – Diagnosing comp systems- Diagnosing cooling system- Air delivery sys- e Control system diagnosis and service. TOTA UTCOMES: etion of the course, the students will be able to Solve the simple problems related to psychrometry and refrig- Understand the operation of the individual components of the sensors, actuators and electronic control Understand the range of techniques that can be used in diagr Identify faults which affect system performance Provide adequate knowledge in safe working practice. Underst correct procedures for A/C service and repair (S: ren Farnell and James D. Halderman, Automotive Heating, Ve	ontro ign fo bone tem- L: 4 <u>eran</u> A/S nosir stand	nts Au 5 PE 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	and itoma RIO m, the and	anc anc anc ai atio DS

- 1. Goings, L.F., Automotive Air Conditioning, American Technical services, 1974.
- 2. McDonald, K.L., Automotive Air Conditioning, Theodore Audel series, 1978.
- 3. Mitchell Information Services, Inc., Mitchell Automatic Heating and Air Conditioning Systems, Prentice Hall Inc., 1989.

4. Paul Weisler, Automotive Air Conditioning, Reston Publishing Co. Inc., 1990.

CO-PO Mapping

COs	POs												P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2	1	2	1	1	1	1	1	1	3	3	3
2	3	3	2	1	2	1	1	1	1	1	1	2	3	3
3	3	3	2	1	2	1	1	1	1	1	1	2	3	3
4	3	3	2	1	2	1	1	1	1	1	1	2	3	3
5	3	3	2	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	2	1	2	1	1	1	1	1	1	3	3	3

	HYDRAULIC AND PNEUMATICS SYSTEMS	3	0	0	3
COURSE	OBJECTIVES:	v	v		
The main	learning objective of this course is to prepare the students for				
	understand the basics of hydraulic and pneumatic systems.				
2. To	examine the working of hydraulic power drives.				
3. To	apply knowledge on fluid power elements.				
4. To	design hydraulic and pneumatic systems.				
5. To	evaluate the concept of programming in PLC circuits.				
UNIT - I	INTRODUCTION TO FLUID POWER				9
	on to fluid power control- Hydraulic and pneumatics- Selection cr				
•	ower, application of pascal's law, equation, Layout of hydrauli		•		
	nsmission and multiplication of force- Brahma Press- pressu	re lo	sses	- flu	ds
	and properties- ISO symbols.				
	FLUID POWER DRIVES				9
	er drives- Pumps- working principle and construction details of g				
	ydraulic motor, Hydrostatic transmission drives and charact				
	Types of hydraulic components -Hydraulic Supply Compon	ents-	· Pn	euma	atic
power sup	ply- Compressor, air distribution, air motors, FRL unit.				
	FLUID POWER ELEMENTS				9
Control va	lves- pressure, flow direction- working principles and construct	ion-	Spec	cial ty	/pe
valves ca	rtridge, modular, proportional and servo- Selection and actua	ation	met	thods	s. •
mounting,	cushioning, pipe fittings- Fluid conditioning elements - Accumula	ators	. Cas	se sti	Jdy
related to	automotive application.				
UNIT -IV	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN				-
UNIT -IV Design of	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and				
UNIT -IV Design of circuit cor	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito	ch m	iap i	meth	n of od-
UNIT -IV Design of circuit cor Regenera	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu	ch m	iap i	meth	n of od-
UNIT -IV Design of circuit cor Regenerat circuits. C	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application.	ch m	iap i	meth	n of od- ing
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS	ch m it, Sy	iap i ynch	meth roniz	od- ing
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc.	ch m it, Sy	nap i ynch o pn	meth roniz	n of od- ing 9 atic
UNIT -IV Design of circuit cor Regenerat circuits. Co UNIT - V Use of ele sequencin	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL	ch m it, Sy lectr	o pn	meth roniz euma	od ing atic
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sector	ch m it, Sy lectr	o pn	meth roniz euma	od ing atic
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sector y related to automotive application. TOTA OUTCOMES:	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sector y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sectory related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veitor tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sector y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veite tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n o od ing atic ng
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n of od- ing atic ng- iits
UNIT -IV Design of circuit cor Regenera circuits. C: UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO5	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veitor tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sectory related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits.	ch m it, S Electr _C pr quend	o pn o gra	meth roniz euma ammi circu	n of od- ing atic ng- iits
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO5 REFEREN	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veitor tive, speed control using Meter in Meter out, High low circuase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits. ICES:	ch m it, Sy Electr C pr quent AL: 4	o pn o gra cing 5 PE	meth roniz euma ammi circu ERIO	9 atic ng· iits DS
UNIT -IV Design of circuit cor Regeneral circuits. Ci UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO5 REFEREN 1. An	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veitor tive, speed control using Meter in Meter out, High low circulase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits. ICES: thony Espisito, "Fluid Power with Application", Pearson Education	ch m it, Sy Electr C pr quent AL: 4	o pn o gra cing 5 PE	meth roniz euma ammi circu ERIO	9 atic ng· iits DS
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO5 REFEREN 1. An Pte	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits. ICES: thony Espisito, "Fluid Power with Application", Pearson Educatio e.Ltd, Delhi, India, Fifth Edition, First Indian Reprint, 2003	ch m it, Sy Electr C pr quent AL: 4	o pn o gra cing 5 PE	meth roniz euma circu ERIO	9 atic ng· iits DS
UNIT -IV Design of circuit cor Regenera circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFEREN 1. An Pte 2. We	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits. ICES: thony Espisito, "Fluid Power with Application", Pearson Educatio e.Ltd, Delhi, India, Fifth Edition, First Indian Reprint, 2003 erner Deppert and Kurt Stoll, "Pneumatic Controls: An introduction	ch m it, Sy Electr C pr quent AL: 4	o pn o gra cing 5 PE	meth roniz euma circu ERIO	9 atic ng- iits DS
UNIT -IV Design of circuit cor Regenerat circuits. Ca UNIT - V Use of ele sequencin Logic gate Case stud COURSE Upon com CO1 CO2 CO3 CO4 CO5 REFEREN 1. An Pte 2. We ", V	HYDRAULIC AND PNEUMATIC CIRCUITS DESIGN Hydraulic and Pneumatic circuits for automation, Selection and nponents, sequencing circuits, cascade and Karnaugh- Veito tive, speed control using Meter in Meter out, High low circu ase study related to automotive application. ELECTRO PNEUMATICS AND PLC CIRCUITS ctrical timers, switches, solenoid, relay, proximity sensors etc. E g Ladder diagram- PLC: – elements, function and selection- PL es using PLC-Ladder and different programming methods- Sec y related to automotive application. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the basics of hydraulic and pneumatic systems. Examine the working of hydraulic power drives. Apply knowledge on fluid power elements. Design hydraulic and pneumatic systems. Evaluate the concept of programming in PLC circuits. ICES: thony Espisito, "Fluid Power with Application", Pearson Educatio e.Ltd, Delhi, India, Fifth Edition, First Indian Reprint, 2003	ch m it, Sy Electr C pr quent AL: 4	o pn o gra cing 5 PE	meth roniz euma circu ERIO	od- ing atic ng- iits. DS

COs		POs												SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	1	1	2	1	1	3	3	3
2	3	3	3	3	3	2	1	1	2	1	1	3	3	3
3	3	3	3	3	3	2	1	1	2	1	1	3	3	3
4	3	3	3	3	3	2	1	1	2	1	1	3	3	3
5	3	3	3	3	3	2	1	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	1	1	2	1	1	3	3	3

1 – Slight,	2 – Moderate,	3 – Substantial

AU23033	TRANSPORT MANAGEMENT	<u></u> З	0	Р 0	3
COURSE	OBJECTIVES:	Ŭ	•	•	
The main	learning objective of this course is to prepare the students for				
1. To	understand transport management and fleet organization.				
2. To	learn about various transport systems and their advantages				
3. To	understand scheduling and fare structure.				
4. To	learn the need and requirement of documentation and certificat	ion.			
5. To	learn the importance of transport management.				
UNIT - I	INTRODUCTION				9
	I management; objectives and functions of personnel managem				
	and their relevance to organization, personality problems. Select				
•	n, employment tests, interviewing, introduction to training objecti	ves,	adva	intag	jes
	of training, training procedure, psychological tests.				1
UNIT - II	TRANSPORT SYSTEMS				9
	on to various transport systems. Advantages of motor transport.				
	strative, traffic, secretarial and engineering divisions. chain of res	pons	sibility	/, for	m
	hip by state, municipality, public body and private undertakings.				-
UNIT - III	SCHEDULING AND FARE STRUCTURE				9
	eatures of operating costs for transport vehicles with examples				
	re structure and method of drawing up of a fare table. Vario			of fa	ar
	methods. Basic factors of bus scheduling. Problems on bus sch	eduli	ng.		1
UNIT -IV	MOTOR VEHICLE ACT				9
-					
Traffic sig	ns, fitness certificate, registration requirements, permit insuranc				na
Traffic sig regulation	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recov	ery v	/ans,	Po۱	na Ne
Traffic sig regulation wagons a	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for comp	ery v	/ans,	Po۱	na we /e
Traffic sig regulation wagons a UNIT - V	ns, fitness certificate, registration requirements, permit insuranc s, description of vehicle-tankers, tippers, delivery vans, recov nd fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE	ery v beter	/ans, ice to	Pov driv	na we /e
Traffic sig regulation wagons a UNIT - V Preventive	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for compared MAINTENANCE maintenance system in transport industry, tyre maintenance pro	ery N Deter	/ans, ice to ires.	Pov o driv Cau	na we /e
Traffic sig regulation wagons a UNIT - V Preventive for unever	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for compared MAINTENANCE maintenance system in transport industry, tyre maintenance propriet tyre wear, remedies, maintenance procedure for better fuel eco	ery N Deter	/ans, ice to ires.	Pov o driv Cau	na we /e
Traffic sig regulation wagons a UNIT - V Preventive	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for compared MAINTENANCE maintenance system in transport industry, tyre maintenance property tyre wear, remedies, maintenance procedure for better fuel economic layout.	ery N beter bcedu bnom	vans, <u>ice to</u> ires. iy, D	Pov o driv Caus esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for compared MAINTENANCE e maintenance system in transport industry, tyre maintenance procedure for better fuel economic tapout.	ery N beter bcedu bnom	vans, <u>ice to</u> ires. iy, D	Pov o driv Caus esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for comparison of maintenance system in transport industry, tyre maintenance procedure for better fuel economy tyre wear, remedies, maintenance procedure for better fuel economy layout.	ery N beter bcedu bnom	vans, <u>ice to</u> ires. iy, D	Pov o driv Caus esigr	na we /e. se
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for comparison to the maintenance system in transport industry, tyre maintenance procedure for better fuel economy tyre wear, remedies, maintenance procedure for better fuel economy to the course, the students will be able to	ery N beter bcedu bnom AL: 4	vans, <u>ice to</u> ires. iy, D	Pov o driv Caus esigr	na we /e. se
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr	ns, fitness certificate, registration requirements, permit insurances, description of vehicle-tankers, tippers, delivery vans, recovend fire fighting vehicles. Spread over, running time, test for comparison of the course, maintenance procedure for better fuel eccelayout.	ery N beter bcedu bnom AL: 4	vans, <u>ice to</u> ires. iy, D	Pov o driv Caus esigr	na we /e. se
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro tyre wear, remedies, maintenance procedure for better fuel eco layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management.	ery N Deter Dicedu Dinom AL: 4	vans, nce to ires. ny, D 5 PE	Pov o driv Caus esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro tyre wear, remedies, maintenance procedure for better fuel eco tayout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative,	ery N Deter Dicedu Dinom AL: 4	vans, nce to ires. ny, D 5 PE	Pov o driv Caus esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- n tyre wear, remedies, maintenance procedure for better fuel ecc layout. TOTA OUTCOMES: poletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions.	ery Noeter bocedu bonom AL: 4 and traff	ires. ny, D 5 PE	Pov o driv Cau: esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- netyre wear, remedies, maintenance procedure for better fuel ecce layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s	ery Noeter bocedu bonom AL: 4 and traff	ires. ny, D 5 PE	Pov o driv Cau: esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr CO1 CO2	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro tyre wear, remedies, maintenance procedure for better fuel eco layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods.	ery Noteter bocedu bonom AL: 4 and traff	vans, nce to ires. ny, D 5 PE	Pov o driv Cau: esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr CO1 CO2	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- netyre wear, remedies, maintenance procedure for better fuel eco- tayout. TOTA OUTCOMES: neletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and	ery Noteter bocedu bonom AL: 4 and traff	vans, nce to ires. ny, D 5 PE	Pov o driv Cau: esigr	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr CO1 CO2 CO3	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- n tyre wear, remedies, maintenance procedure for better fuel eco- tayout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance.	ery Noteter bocedu bonom AL: 4 and traff struct d veh	ice to ires. iy, D 5 PE ic ture a	Pov o driv Caus esigr RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr CO1 CO2 CO3	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- netyre wear, remedies, maintenance procedure for better fuel eccel ayout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fare	ery Noteter bocedu bonom AL: 4 and traff struct d veh	ice to ires. iy, D 5 PE ic ture a	Pov o driv Caus esigr RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com CO1 CO2 CO3 CO3 CO4 CO5	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- tyre wear, remedies, maintenance procedure for better fuel ecc layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fa and the remedies to solve the problems.	ery Noteter bocedu bonom AL: 4 and traff struct d veh	ice to ires. iy, D 5 PE ic ture a	Pov o driv Caus esigr RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com CO1 CO2 CO3 CO4 CO5 TEXT-BO	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- tyre wear, remedies, maintenance procedure for better fuel ecc layout. TOTA OUTCOMES: poletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fa and the remedies to solve the problems. OKS:	ery Noteter bocedu bonom AL: 4 and traff struct d veh	ice to ires. iy, D 5 PE ic ture a	Pov o driv Caus esigr RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon corr CO1 CO2 CO3 CO4 CO5 TEXT-BO 1. Jo	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE e maintenance system in transport industry, tyre maintenance pro- netyre wear, remedies, maintenance procedure for better fuel ecce layout. TOTA OUTCOMES: peletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fa and the remedies to solve the problems. OKS: hn Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.	ery Noteter	ice to ires. iy, D 5 PE ic ture a icle	Pov o driv Causesign RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com CO1 CO2 CO3 CO3 CO4 CO5 TEXT-BO 1. Jo Kit	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE emaintenance system in transport industry, tyre maintenance pro- tyre wear, remedies, maintenance procedure for better fuel eco layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fa and the remedies to solve the problems. OKS: hn Duke, "Fleet Management", McGraw-Hill Co, USA, 1984. cchin.L.D., "Bus Operation", III edition, Illiffee and Sons Co., Lond	ery Noteter	ice to ires. iy, D 5 PE ic ture a icle	Pov o driv Causesign RIO	
Traffic sig regulation wagons a UNIT - V Preventive for unever bus depot COURSE Upon com CO1 CO2 CO3 CO4 CO5 TEXT-BO 1. Jo Kit REFEREN	ns, fitness certificate, registration requirements, permit insurand s, description of vehicle-tankers, tippers, delivery vans, recovind fire fighting vehicles. Spread over, running time, test for comp MAINTENANCE emaintenance system in transport industry, tyre maintenance pro- tyre wear, remedies, maintenance procedure for better fuel eco layout. TOTA OUTCOMES: pletion of the course, the students will be able to Understand the functions of management, training procedure a psychological Tests followed in transport management. Understand the transport systems, functions of administrative, secretarial and engineering divisions. Understand and apply the knowledge on scheduling and fare s Collecting methods. Understand the vehicle act, traffic signs, fitness procedure and insurance. Apply the knowledge on preventive maintenance, causes for fa and the remedies to solve the problems. OKS: hn Duke, "Fleet Management", McGraw-Hill Co, USA, 1984. cchin.L.D., "Bus Operation", III edition, Illiffee and Sons Co., Lond	ery Notester bocedu bocedu bonom AL: 4 and traff struct d veh ailure don,	vans, nce to ires. ny, D 5 PE ic ture a icle a in v	Povo o driv Causesigr RIO	

COs		POs												SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	1	3	2	2	-	2	2	1	-	2	-	3	1	3
2	1	3	2	2	-	2	2	1	-	2	-	3	1	3
3	1	3	2	2	-	2	2	1	-	2	-	3	1	3
4	1	3	2	2	-	2	2	1	-	2	-	3	1	3
5	1	3	2	2	-	2	2	1	-	2	-	3	1	3
Avg	1	3	2	2	-	2	2	1	-	2	-	3	1	3

1 – Slight,	2 – Moderate,	3 – Substantial

AU23034	MOTORSPORT TECHNOLOGY	L 3	T	P 0	C 3
COURSE	OBJECTIVES:	3	0	U	ა
	learning objective of this course is to prepare the students for				
	understand transport management and fleet organization.				
	learn about various transport systems and their advantages				
	understand scheduling and fare structure.				
	learn the need and requirement of documentation and certificat	ion.			
5. To	learn the importance of transport management.				
UNIT - I	RACE CAR DESIGN AND DEVELOPMENT				9
Problems	Imposed by Racing and Racing Objectives. Rulebook, F	Regu	latior	ns, a	and
Constraint	s. Road Car vs Race Car Comparison. Performance and Handlin	ng Sp	becifi	catic	ns.
Structure,	Weight Distribution, and Driver Safety. Tire and Adjustable Feat	tures	. Pre	limin	ary
Design ar	nd Analysis. Driver-Vehicle Relationship and Desirable Char	acter	istic	s. Ca	ase
Studies.					
UNIT - II	RACE CAR AERODYNAMICS				9
	nic Forces and Moments. Race Car Drag Components and Es				
	d Ground Plane Simulation. Spoilers, Wings, and Effectiveness in				
	evices and Vortex Creation. Pressure Change Creation Device			ze W	ind
Tunnel Te	sting. Case Studies: Chaparral Wings, Formula Benetton's Wine	d Tur	nnel.		
UNIT - III	RACE CAR CHASSIS				9
Conditions	s for Cornering and Chassis Tuning. Effects of High-Speed Bra	aking	, Co	rneri	ng,
and Comb	ined Actions. Steady State Cornering and Acceleration. Straight	Line	Acce	elerat	ion
and Throt	tle Behavior. Moving CG Position and Roll Center. Anti-Pitc	h Ge	ome	etry a	and
Chassis S	teering Axis. Chassis Ride Roll Characteristics and Track Width.	Tire	s, Ri	ms, a	and
	ess Adjustment. Case Studies: Monocoque Chassis Developme	nt, C	arbo	n Fik	er.
UNIT -IV	RACE CAR SUSPENSION SYSTEM				9
	pension Design and Performance Features. Camber Effects				
	A Suspension and Rear Suspension Types.F1 Car Suspensio				
•	on Springs and Installation Considerations. Damping in Racing a				-
•	se. Steering Activity and Bump/Rebound Damping. Chassis	Tracl	k Wi	dth a	and
	g Rate. Adjusting Roll Stiffness Distribution.				
UNIT - V	RACE CAR DRIVES AND BRAKING SYSTEMS				9
Limited Sli Limitations	Rear-Wheel Drive in Racing. Four-Wheel Drive and Differe ip Differential and Traction Control. Mechanical Components in and Considerations of Braking in Racing. Brake Boost and Eff draulics, Ventilation, and Distribution. ABS in Racing and Carbo	Brak ects	king : of "g	Syste " For	em. ce.
Case Stud					
	ТОТ/	AL: 4	5 PE	ERIO	DS
	OUTCOMES:				
Upon com	pletion of the course, the students will be able to	- 1			- 1 -
CO1	Understand the unique challenges and objectives in racing, in compliance, performance requirements, and design consideration	tions			0K
CO2	Apply principles of aerodynamics, including the use of spoilers flow control devices, to optimize race car performance and con capabilities.	,	U '	and	
CO3	Analyze and optimize race car chassis design and tuning, con such as weight distribution, suspension systems, and handling		•		
CO4	Evaluate and optimize race car suspension systems to enhance traction, and overall handling performance.	ce sta	abilit		

- 1. Adrian Newey, "How to Build a Car: The Autobiography of the World's Greatest Formula 1 Designer," HarperCollins, 2017.
- 2. Simon McBeath, "Competition Car Aerodynamics: A Practical Handbook," Haynes Publishing, 2014.
- 3. Brian Beckman, "Vehicle Dynamics: Theory and Application," Society of Automotive Engineers (SAE) International, 2013.
- 4. John Dixon, "Competition Car Composites: A Practical Handbook," Haynes Publishing, 2013.
- 5. Michael Costin and David Phipps, "Competition Car Chassis: Design, Structures, and Materials," Haynes Publishing, 2008.
- 6. Allan Staniforth, "Competition Car Suspension: Design, Construction, Tuning," Haynes Publishing, 2005.
- 7. David E. Hoyle, "ISO 9000 Quality Systems Handbook: Automotive Industry Edition," Butterworth-Heinemann, 2005.
- 8. Paul Van Valkenburgh, "Race Car Engineering & Mechanics," Bentley Publishers, 2001.
- 9. William F. Milliken and Douglas L. Milliken, "Race Car Vehicle Dynamics," SAE International, 1995.
- 10. Carroll Smith, "Tune to Win: The art and science of race car development and tuning," Aero Publishers, 1978.

CO-PO Mapping

COs	POs												P	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	3	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

HONOURS DEGREE COURSES

AU23035	AUTOMOTIVE INSTRUMENTATION AND TESTING	L	Т	Ρ	С
		3	0	0	3
Of this cour 1. To p 2. To tem 3. To c in in 4. To t	DBJECTIVES: rse are provide theoretical and applicative knowledge in automobile te identify the various instruments for measuring force, aperature, fluid flow, velocity and rotational speed. enhance the knowledge of students regarding the experimentand adustries. Familiarize the students on standard test codes. mpart skills on the testing procedure followed for evaluating to	torq al me	ue, thod	pres s foll	sure, owed
UNIT - I	MECHANICAL MEASUREMENT				9
Introductio	n to measurements – Construction, principle, working o	of In	stru	ment	s for
	force, torque, pressure, temperature, fluid flow, velocity, rota	tiona	l spe	ed.	
UNIT - II	VIBRATION AND BODY TEST				9
	neasurement instrument – accelerometer and signal con-		•		
simulation	sled testing, methodology, vehicle acceleration m tion. Dolly roll over test, dolly role over fixture, photographic	ieasi			and rade
	of strength test –. Door system crush test – wind tunnel tests.	<i>,</i> , ,	uco		rage.
UNIT - III	CRASH AND BRAKE TEST				9
Crash test	s –standards – road hazard impact test for wheel and tyr	e as	sem	blies	, test
procedures	s, failure and performance criteria. Bumpers - types of tests, p	endu	ılum	test,	fixed
	rrier test, procedure, performance criteria. Air and hydraulic b	rake	test	, air	orake
	alves test, performance requirements.				
UNIT - IV					9
	r Engine testing – Instruments for performance testing of engine ring noise, vibration in cylinder, different types of engine te industry				
UNIT - V					9
Laboratory	tests- test tracks - Endurance Tests - Dynamic cornering fati	gue,	dyn	amic	
	ue tests – procedure, bending moment and radial load calcula				
		TAL	: 45	PER	IODS
	DUTCOMES				
	bletion of the course, the students will be able to				
	Demonstrate the understanding of engine testing procedures.				•.
	Develop a measurement strategy for temperature, pressure, r				-
	Jnderstand sensors and instrumentation, and to analyze and				
	Develop new system that would help in keeping the environm	ent s	usta	inab	le.
	Demonstrate the understanding of brake testing procedures				
TEXTBOO		·	1.1:11	D L I	
	use W H and Anglin D L., "Automotive Mechanics"' Tata McC npany, 2004.	sraw	HIII	Pubi	Isning
	G. Giles, Vehicle Operation & Testing. Volume 7 of Automotiv	e tec	hnol	oav	series
	e,1969	0.00		9)	501100
3. Ric	hard D. Atkins, "An Introduction to Engine Testing and Develor ernational 2009.	opme	ent",	SAE	
REFEREN					
	with TG and Buck N L, "Mechanical Measurements", Addition	on W	/esle	у	
Put	olishing Company Limited, 1995.				

2. Jain R K "Mechanical and Industrial Measurements", Khanna Publishers, Delhi, 1999.

3. Stockel M W, "Auto Mechanics Fundamentals", Good Heart-Wilcox Co., Inc., 2000. CO-PO Mapping

COs		POs												SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	3	3	3	3	3	3	3	3	2
2	3	3	3	3	3	3	3	3	3	3	3	3	3	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	2
4	3	3	3	3	3	3	3	3	3	3	3	3	3	2
5	3	3	3	3	3	3	3	3	3	3	3	3	3	2
Avg	3	3	3	3	3	3	3	3	3	3	3	3	3	2

AU2303	6 COST MANAGEMENT OF ENGINEERING PROJECTS	L	T	P	<u>C</u>
COURSI		3	0	0	3
	ummarize the costing concepts and their role in decision makir	na			
	fer the project management concepts and their various aspects		selec	tion	
	terpret costing concepts with project execution				
	evelop knowledge of costing techniques in service sector and v	vario	us bi	udge	tary
C	ontrol techniques			-	-
	ustrate with quantitative techniques in cost management				
UNIT - I	INTRODUCTION TO COSTING CONCEPTS				9
	ion to measurements – Construction, principle, working o				s foi
	g force, torque, pressure, temperature, fluid flow, velocity, rota	tiona	l spe	ed.	
UNIT - II	INTRODUCTION TO PROJECT MANAGEMENT				9
	neaning, Different types, why to manage, cost overruns centres				
	xecution: conception to commissioning. Project execution as				
	and nontechnical activities, Detailed Engineering activities, Pr arances and documents, Project team: Role of each member,				
	a required with significance, Project contracts.	impe	nan		ojec
UNIT - II					9
	execution Project cost control, Bar charts and Network	dia	aran		-
	ioning: mechanical and process, Cost Behavior and Profit				
	Distinction between Marginal Costing and Absorption Co				0
	Cost-Volume-Profit Analysis, Various decision-making				
	s: Pareto Analysis, Target costing, Life Cycle Costing.	•			
UNIT - I		ONTF	ROL		9
UNIT - I				Plar	-
UNIT - IN Just-in-ti Activity-E	COSTING OF SERVICE SECTOR AND BUDGETERY CO me approach, Material Requirement Planning, Enterprise R Based Cost Management, Bench Marking; Balanced Score Car	lesou d an	irce d Va	lue-0	ning Chair
UNIT - I Just-in-ti Activity-E Analysis	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Rased Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Zerformance budgets; Zerform	lesou d an ero-b	irce d Va	lue-0	ning Chair Igets
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V	COSTING OF SERVICE SECTOR AND BUDGETERY CO me approach, Material Requirement Planning, Enterprise R Based Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Ze QUANTITATIVE TECHNIQUES FOR COST MANAGEME	tesou d an ero-b	urce d Va based	lue-(d buc	ning Chair
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear P	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise R Based Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Ze QUANTITATIVE TECHNIQUES FOR COST MANAGEME rogramming, PERT/CPM, Transportation problems, Assignmen	tesou d an ero-b	urce d Va based	lue-(d buc	ning Chair Igets
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear P	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise R Based Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Ze QUANTITATIVE TECHNIQUES FOR COST MANAGEME rogramming, PERT/CPM, Transportation problems, Assignmen Curve Theory.	tesou d an ero-b NT it pro	urce d Va based blem	llue-(d buc ns,	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear Pu Learning	COSTING OF SERVICE SECTOR AND BUDGETERY CO me approach, Material Requirement Planning, Enterprise R Based Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Ze QUANTITATIVE TECHNIQUES FOR COST MANAGEME rogramming, PERT/CPM, Transportation problems, Assignmen Curve Theory.	tesou d an ero-b NT it pro	urce d Va based blem	llue-(d buc ns,	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning	COSTING OF SERVICE SECTOR AND BUDGETERY CO me approach, Material Requirement Planning, Enterprise R ased Cost Management, Bench Marking; Balanced Score Car Budgetary Control: Flexible Budgets; Performance budgets; Ze QUANTITATIVE TECHNIQUES FOR COST MANAGEME ogramming, PERT/CPM, Transportation problems, Assignmen Curve Theory.	tesou d an ero-b NT it pro	urce d Va based blem	llue-(d buc ns,	ning Chair Igets
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning COURSI Upon co	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Research Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zecontrol: Flexible Budgets; Performance Budgets; Performanc	tesou ero-b NT t pro	urce d Va based blem : 45	llue-(d buc ns,	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Reased Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zeter QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignment Curve Theory. TO COUTCOMES mpletion of the course, the students will be able to Understand the costing concepts and their role in decision material	esou d an ero-b NT t pro TAL	urce d Va based blem : 45	llue-(d buc ns, PER	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning COURSI Upon co	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Reased Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zecond QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignment Curve Theory. TO	esou d an ero-b NT t pro TAL	urce d Va based blem : 45	llue-(d buc ns, PER	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear Pr Learning COURSI Upon co CO1	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Reased Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zeter QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignmen Curve Theory. TO SOUTCOMES mpletion of the course, the students will be able to Understand the costing concepts and their role in decision mature vario	esou d an ero-b NT t pro TAL	urce d Va based blem : 45	llue-(d buc ns, PER	ning Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear Pr Learning COURSI Upon co CO1 CO1	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Reased Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zeto QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignmen Curve Theory. TO FOULTOMES npletion of the course, the students will be able to Understand the costing concepts and their role in decision mature selection Interpret costing concepts with project execution Gain knowledge of costing techniques in service sector and v	esou d an ero-b NT t pro TAL aking	urce d Va based blem : 45	lue-(d buc ns, PER	ining Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear Pr Learning COURSI Upon cor CO1 CO1 CO2 CO3 CO3	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Research Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zecond QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignmen Curve Theory. TO OUTCOMES mpletion of the course, the students will be able to Understand the costing concepts and their role in decision material the project management concepts and their vario selection Interpret costing concepts with project execution Gain knowledge of costing techniques in service sector and v control techniques	aking	urce d Va based blem : 45 spec	lue-(d buc ns, PER	ining Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning COURSI Upon col CO1 CO2 CO3 CO3 CO4 CO5	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Researce Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zeter QUANTITATIVE TECHNIQUES FOR COST MANAGEME Togramming, PERT/CPM, Transportation problems, Assignmen Curve Theory. TO FOULTION Transportation problems, Assignmen Curve Theory. TO FOULTCOMES mpletion of the course, the students will be able to Understand the costing concepts and their role in decision material the project management concepts and their vario selection Interpret costing concepts with project execution Gain knowledge of costing techniques in service sector and v control techniques Become familiar with quantitative techniques in cost management	aking	urce d Va based blem : 45 spec	lue-(d buc ns, PER	ining Chair Igets 9
UNIT - IN Just-in-ti Activity-E Analysis UNIT - V Linear Pr Learning COURSI Upon col CO1 CO1 CO2 CO3 CO4 CO3 CO4 CO5 REFERE 1. Ashis publ	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Researd Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zecontrol: Flexible Budgets; Performance Budgets; Perform	ariou A. H.	urce d Va blem : 45 spec us bu	lue-0	ary
UNIT - IN Just-in-ti Activity-E Analysis, UNIT - V Linear Pr Learning COURSI Upon col CO1 CO1 CO2 CO3 CO3 CO4 CO3 CO4 CO5 REFERE 1. Ashis publ 2. Char 3. Char	COSTING OF SERVICE SECTOR AND BUDGETERY COme approach, Material Requirement Planning, Enterprise Researd Cost Management, Bench Marking; Balanced Score Care Budgetary Control: Flexible Budgets; Performance budgets; Zome approach, Plexible Budgets; Performance budgets; Zome auditative Theory Plexible Budgets; Performance budgets; Zome and the cost in the cost of the course, the students will be able to OUTCOMES TO Poletion of the course, the students will be able to Understand the costing concepts and their role in decision material concepts and their vario selection Interpret costing concepts with project execution Gain knowledge of costing techniques in service sector and v control techniques Become familiar with quantitative techniques in cost manager NCES: Sh K. Bhattacharya, Principles & Practices of Cost Accounting Application	aking aking aking	urce d Va blem : 45 : 45 : spec us bu Whe	ts in dget	ary

COs	POs											PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	-	3	2	2	1	1	-	3	3	3	2
2	3	3	3	-	3	2	2	1	1	-	3	3	3	2
3	3	3	3	-	3	2	2	1	1	-	3	3	3	2
4	3	3	3	-	3	2	2	1	1	-	3	3	3	2
5	3	3	3	-	3	2	2	1	1	-	3	3	3	2
Avg	3	3	3	-	3	2	2	1	1	-	3	3	3	2

AU23037	23037 ENTREPRENEURSHIP DEVELOPMENT											
		3	0	0	3							
	DBJECTIVES:											
The main learning objective of this course is to prepare the students for:												
 Explaining the types, characteristics of entrepreneurship and its role in economic development. 												
	lying the theories of achievement motivation and the principle	es of										
entrepreneurship development program to enterprise.												
	ecting the appropriate form of business ownership in setting u	ip ar	n ent	erpri	se.							
	4. Applying the fundamental concepts of finance and accounting to enterprise.											
5. Idei	tifying sickness in industry, selecting the appropriate corrective	ve m	ieas	ures	, and							
ider	tifying the growth strategies in enterprise.											
UNIT - I	ENTREPRENEURSHIP				9							
	ur – Characteristics – Types of Entrepreneurs – Dit											
	ur and Intrapreneur – Role of Entrepreneurship in Econom											
	fecting Entrepreneurial Growth – Economic, Non-Econo	mic,	Go	overr	nment							
Actions.	Τ											
UNIT - II	MOTIVATION				9							
	urial Motivation: Theories and Factors, Achievemer											
	urial Competencies – Entrepreneurship Development Pr											
	– Business Game, Thematic Apperception Test, Se	eit-R	aunę	ງ, ະ	Stress							
manageme	BUSINESS				9							
-	prises – Definition, Characteristics, Project Identification and	colo	otion		-							
	n: Significance, content, formulation of project report –											
	id method – Ownership Structures: Selection & Pattern.	i ioj		, ippi	albai.							
UNIT - IV	FINANCING AND ACCOUNTING				9							
-	eed, Sources, Capital Structure, Term Loans – Accounting:	Nee	d C) biec								
	burnal, Ledger, Trial Balance, Final Accounts – Working Car											
	e, Assessment, Factors, Sources, Management.			0								
UNIT - V	SUPPORT TO ENTREPRENEURS				9							
	SUPPORT TO ENTREPRENEDRS				and							
Sickness i	n small Business: Concept, Signals, Symptoms, Magnitu	ude,	Са	uses	anu							
Consequer	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small S	cale	Ent	erpri	ses –							
Consequer Growth Str	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small S ategies in Small Scale Enterprise – Institutional Support to En	cale itrep	Ent rene	erpri urs:	ses – Need							
Consequer Growth Str and Supp	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small S ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ne	cale itrep	Ent rene	erpri urs:	ses – Need							
Consequer Growth Str and Supp	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small S ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ne on, Investment.	cale itrep ed,	Enter rene Dep	erpri urs: preci	ses – Need ation,							
Consequer Growth Str and Supp Rehabilitat	n small Business: Concept, Signals, Symptoms, Magnitu aces, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ne on, Investment.	cale itrep ed,	Enter rene Dep	erpri urs: preci	ses – Need ation,							
Consequer Growth Str and Supp Rehabilitat	n small Business: Concept, Signals, Symptoms, Magnitu icces, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT	cale itrep ed,	Enter rene Dep	erpri urs: preci	ses – Need ation,							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES oletion of the course, the students will be able to	cale itrep ed, FAL :	Ente rene Dep : 45	erpri urs: preci PER	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitat	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES eletion of the course, the students will be able to explain the types, characteristics of entrepreneurship and its re-	cale itrep ed, FAL :	Ente rene Dep : 45	erpri urs: preci PER	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitat COURSE (Upon comp CO1	n small Business: Concept, Signals, Symptoms, Magnitu aces, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES eletion of the course, the students will be able to explain the types, characteristics of entrepreneurship and its me evelopment.	cale itrep ed, FAL : ole i	Ent rene Dep : 45	erpri urs: preci PER	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitati COURSE C Upon comp CO1 E CO2 /	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re evelopment. Apply the theories of achievement motivation and the principle	cale itrep ed, FAL : ole i	Ent rene Dep : 45	erpri urs: preci PER	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 E CO2 A e	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES eletion of the course, the students will be able to explain the types, characteristics of entrepreneurship and its re- levelopment. spply the theories of achievement motivation and the principle intrepreneurship development program.	cale trep ed, FAL : ole i es of	Enta rene Dep : 45	erpri urs: preci PER	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 E CO2 A CO3 S	n small Business: Concept, Signals, Symptoms, Magnitu aces, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En- ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. Apply the theories of achievement motivation and the principle Intrepreneurship development program. Select the appropriate form of business ownership in setting u	cale itrep ed, FAL : ole i es of p an	Enta rene Dep : 45	erpri urs: preci PER onor	ses – Need ation, IODS							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 CO2 CO2 CO3 CO4 A	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Scategies in Small Scale Enterprise – Institutional Support to En- ort – Taxation Benefits to Small Scale Industry: Ner- on, Investment. TOT OUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. Apply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting u apply the fundamental concepts of finance and accounting to explanate the state of the fundamental concepts of finance and accounting to the state of t	cale itrep ed, FAL : ole i es of p an ente	Entor rene Dep : 45 n ec	erpri urs: preci PER onor erpri: e.	ses – Need ation, IODS nic							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 E CO2 A CO2 A CO3 S CO4 A	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En- ort – Taxation Benefits to Small Scale Industry: Ne- on, Investment. TOT OUTCOMES letion of the course, the students will be able to explain the types, characteristics of entrepreneurship and its re- evelopment. Apply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting up apply the fundamental concepts of finance and accounting to open the top of the course, select the appropriate corrective re-	cale itrep ed, FAL : ole i es of p an ente	Entor rene Dep : 45 n ec	erpri urs: preci PER onor erpri: e.	ses – Need ation, IODS nic							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 CO2 CO2 CO3 CO4 CO5 I	n small Business: Concept, Signals, Symptoms, Magnitu aces, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT DUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. Supply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting up upply the fundamental concepts of finance and accounting to edentify sickness in industry, select the appropriate corrective r dentify the growth strategies in enterprise.	cale itrep ed, FAL : ole i es of p an ente	Entor rene Dep : 45 n ec	erpri urs: preci PER onor erpri: e.	ses – Need ation, IODS nic							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 CO2 CO2 CO3 CO3 CO4 CO5 I in TEXTBOO	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT OUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. Apply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting up opply the fundamental concepts of finance and accounting to or dentify sickness in industry, select the appropriate corrective re- dentify the growth strategies in enterprise. KS:	cale trep ed, TAL: ole i es of p an ente mea	Entorene Dep 45 n ecorrento sure	erpri urs: : preci PER onor e. s, ar	ses – Need ation, IODS nic se.							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 6 CO2 6 CO2 6 CO3 5 CO4 7 CO5 1 in TEXTBOO 1. S.S	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En- ort – Taxation Benefits to Small Scale Industry: Ne- on, Investment. TOT DUTCOMES letion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. upply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting u upply the fundamental concepts of finance and accounting to ordentify sickness in industry, select the appropriate corrective re- dentify the growth strategies in enterprise. KS: . Khanka, "Entrepreneurial Development" S. Chand& Co. Ltd.	cale trep ed, TAL: ole i es of p an ente mea	Entorene Dep 45 n ecorrento sure	erpri urs: : preci PER onor e. s, ar	ses – Need ation, IODS nic se.							
Consequer Growth Str and Supp Rehabilitati COURSE (Upon comp CO1 6 CO2 7 CO2 7 CO2 7 CO3 5 CO4 7 CO5 1 in TEXTBOO 1. S.S Del	n small Business: Concept, Signals, Symptoms, Magnitu ices, Corrective Measures – Government Policy for Small Sc ategies in Small Scale Enterprise – Institutional Support to En ort – Taxation Benefits to Small Scale Industry: Ner on, Investment. TOT OUTCOMES Deletion of the course, the students will be able to Explain the types, characteristics of entrepreneurship and its re- evelopment. Apply the theories of achievement motivation and the principle intrepreneurship development program. Select the appropriate form of business ownership in setting up opply the fundamental concepts of finance and accounting to or dentify sickness in industry, select the appropriate corrective re- dentify the growth strategies in enterprise. KS:	cale trep ed, FAL : ole i es of p an ente mea	Enta rene Dep : 45 : 45 n ecto rpris sure m Na	erpri urs: preci PER onor erpri e. s, ar agar	ses – Need ation, IODS nic se.							

- 1. Charantimath, P. M., Entrepreneurship Development and Small Business Enterprises, Pearson, 2006.
- 2. Hisrich R D and Peters M P, "Entrepreneurship" 5th Edition Tata McGraw-Hill, 2002.
- 3. Mathew J Manimala," Entrepreneurship theory at cross roads: paradigms and praxis" Dream tech, 2nd edition 2006.
- 4. Rabindra N. Kanungo, "Entrepreneurship and innovation", Sage Publications, New Delhi, 1998.
- 5. Singh, A. K., Entrepreneurship Development and Management, University Science Press, 2009.

CO-PO Mapping

COs	POs											PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	-	3	2	2	1	1	-	3	3	3	2
2	3	3	3	-	3	2	2	1	1	-	3	3	3	2
3	3	3	3	-	3	2	2	1	1	-	3	3	3	2
4	3	3	3	-	3	2	2	1	1	-	3	3	3	2
5	3	3	3	-	3	2	2	1	1	-	3	3	3	2
Avg	3	3	3	-	3	2	2	1	1	-	3	3	3	2

AU23038	ERGONOMICS IN AUTOMOTIVE DESIGN	L 3	T	P 0	<u>C</u>
	DBJECTIVES:	3	0	0	3
1. vario	ve of this course is to educate the students regarding the ous ergonomic techniques. ign and develop a new styling in a given vehicle model.				
	ortance of ergonomics in reducing the driver fatigue.				
	of ergonomics in look and safe operation of the vehicle.				
	or design and logical formation of cockpit			<u> </u>	
UNIT - I	FUNDAMENTALS OF ERGONOMICS				9
Data collec	n- principles – applications- Dimension determination, Anthrostion methodology, Different postural considerations -Recen s and styling				
UNIT - II	ERGONOMICS FOR SEATING				9
seating-bac	mensions- interior ergonomics- seat comfort- suspension ok pain reducers- driver & pillion seating arrangement dash k displays- commercial vehicle cabin ergonomics/mechanica cle layout.	boar	d ins	strum	ents-
UNIT - III	ERGONOMICS FOR VISIBILITY				9
	s- driver's visibility- tests for visibility- methods of improving v l equipments and arrangement, mirror and cockpit design.	isibi	lity a	nd sj	pace-
					9
UNIT - IV	ERGONOMICS FOR FRAMES AND BODY				5
Types of f	rame, construction, loads, design consideration, materials				ics &
Types of fr comfort, Po	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo	odies	s, Īay		ics &
Types of fi comfort, Po regulations,	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo	odies	s, Īay		ics & RTO
Types of fr comfort, Po regulations, UNIT - V	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS	odies dy w	s, lay vork	/out,	ics & RTO 9
Types of fr comfort, Po regulations, UNIT - V Passenger design tech Human Fac	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo	dies dy w rgon ECI	s, ľay <u>vork</u> omic E Re	vout, s sy gula	ics & RTO 9 vstem tions,
Types of fi comfort, Po regulations, UNIT - V Passenger design tech	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force	rgon ECI es in	s, lay vork omic E Re rollc	vout, cs sy gula over,	ics & RTO 9 vstem tions,
Types of fr comfort, Po regulations, UNIT - V Passenger design tech Human Fac on impact.	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force	rgon ECI es in	s, lay vork omic E Re rollc	vout, cs sy gula over,	ics & RTO 9 vstem tions, head
Types of fr comfort, Po regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT OUTCOMES of the course, the student will be able to	rgon ECI es in	s, lay vork omic E Re rollc	vout, cs sy gula over,	RTO 9 vstem tions, head
Types of fr comfort, Po regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT DUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques.	rgon ECI es in	s, lay vork omic E Re rollc	vout, cs sy gula over,	ics & RTO 9 vstem tions, head
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT DUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model.	ndies dy w rgon ECI es in	s, lay vork omic E Re rollc : 45	vout, s sy gula over, PER	ics & RTO 9 vstem tions, head
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT OUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Understand the importance of ergonomics in reducing the driv	rgon ECI es in	s, lay vork omic E Re rollc : 45	vout, s sy gula over, PER	ics & RTO 9 vstem tions, head
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U CO3 U	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT OUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Inderstand the importance of ergonomics in reducing the driv explain the role of ergonomics in look and safe operation of th	odies dy w rgon ECI es in TAL	omic omic E Re rollc : 45	vout, s sy gula over, PER	RTO 9 vstem tions, head
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U CO4 E CO5 A	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo aerodynamic, aesthetic & ergonomics considerations for boo VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT OUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Inderstand the importance of ergonomics in reducing the driv explain the role of ergonomics in look and safe operation of the opply the Knowledge in mirror design and logical formation of	odies dy w rgon ECI es in TAL	omic omic E Re rollc : 45	vout, s sy gula over, PER	ics & RTO 9 vstem tions, head
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U CO3 U CO4 E CO5 A TEXTBOON 1. Vive	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for bood VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – etors, Navigation systems, pedal positioning Crash tests, force TOT OUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Inderstand the importance of ergonomics in reducing the driv explain the role of ergonomics in look and safe operation of the opply the Knowledge in mirror design and logical formation of KS: ek D. Bhise 'Ergonomics in the Automotive Design Process" 2	odies dy w rgon ECI es in TAL	atigue kpit	vout, s sy gula over, PER	ics & RTO 9 /stem tions, head IODS
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U CO4 E CO5 A TEXTBOOI 1. Vive Tayl 2. Gkik	rame, construction, loads, design consideration, materials ositioning of operational controls, Types of three wheeler bo , aerodynamic, aesthetic & ergonomics considerations for bood VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, er nnical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT DUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Inderstand the importance of ergonomics in reducing the driv explain the role of ergonomics in look and safe operation of the popy the Knowledge in mirror design and logical formation of KS: ek D. Bhise 'Ergonomics in the Automotive Design Process' 2 lor & Francis Group (xas, N., 2016. Automotive Ergonomics: Driver-Vehicle Interact	odies dy w rgon ECI es in TAL rer fa ie ve coc	atigue kpit	vout, ss sy gula over, PER e. e. e. c Pre	ics & RTO 9 /stem tions, head IODS
Types of fr comfort, Por regulations, UNIT - V Passenger design tech Human Fac on impact. COURSE C At the end of CO1 P CO2 D CO3 U CO3 U CO4 E CO5 A TEXTBOON 1. Vive Tayl 2. Gkik REFERENC 1. Jullia	rame, construction, loads, design consideration, materials obsitioning of operational controls, Types of three wheeler box, aerodynamic, aesthetic & ergonomics considerations for box VEHICLE ERGONOMICS Compartment, Floor Pan, Vehicle interior ergonomics, eranical requirements, Force Analysis, Seating and position – ctors, Navigation systems, pedal positioning Crash tests, force TOT DUTCOMES of the course, the student will be able to Possess the knowledge of various ergonomic techniques. Design and develop a new styling in a given vehicle model. Inderstand the importance of ergonomics in reducing the driv Explain the role of ergonomics in look and safe operation of the poly the Knowledge in mirror design and logical formation of KS: ek D. Bhise 'Ergonomics in the Automotive Design Process" 2 lor & Francis Group (as, N., 2016. Automotive Ergonomics: Driver-Vehicle Interact CES: an Happian -Smith 'An Introduction to Modern Vehicle Design son, W., and Mamalis, A.G., "Crashworthiness of Vehicles, N	odies dy w rgon ECI es in TAL rer fa e ve coc 2012	atigue cork omic E Re rollc : 45 : 45 atigue chicle kpit c CR . CR	PER	ics & RTO 9 vstem tions, head IODS

COs	POs											PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	2	3	3	2	-	-	-	1	3	3	3
2	3	2	2	2	3	3	2	-	-	-	1	3	3	3
3	3	2	2	2	3	3	2	-	-	-	1	3	3	3
4	3	2	2	2	3	3	2	-	-	-	1	3	3	3
5	3	2	2	2	3	3	2	-	-	-	1	3	3	3
Avg	3	2	2	2	3	3	2	-	-	-	1	3	3	3

1 – Slight,	2 –	Moderate,	3 –	Substantial
-------------	-----	-----------	-----	-------------

AU23039		L	Т	Ρ	С
AU23039	INDUSTRIAL SAFETY	3	0	0	3
1. Sun 2. Des 3. Exp	OBJECTIVES: Imarize basics of industrial safety cribe fundamentals of maintenance engineering lain wear and corrosion trate fault tracing				
5. Ider	tify preventive and periodic maintenance				
UNIT - I	INTRODUCTION				9
causes ar health and	causes, types, results and control, mechanical and electric id preventive steps/procedure, describe salient points of fact d safety, wash rooms, drinking water layouts, light, cleanline ressels, etc, Safety colour codes. Fire prevention and firefighti	torie ess,	s ac fire,	t 194 guai	18 for rding,
UNIT - II	FUNDAMENTALS OF MAINTENANCE ENGINEERING				9
responsibi of tools us	and aim of maintenance engineering, Primary and second lity of maintenance department, Types of maintenance, Type ed for maintenance, Maintenance cost & its relation with repla e of equipment.	es ar	nd ap	oplica	ations
UNIT - III	WEAR AND CORROSION AND THEIR PREVENTION				9
Lubrication ii. Pressur vi. Side fe corrosion.	es, causes, effects, wear reduction methods, lubricants-types n methods, general sketch, working and applications, i. Screw e grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. W ed lubrication, vii. Ring lubrication, Definition, principle and fa Types of corrosion, corrosion prevention methods.	dov ick f	vn gr eed	ease lubrio	e cup, cation g the
UNIT - IV	FAULT TRACING				9
sequence in machine I. Any one	ing-concept and importance, decision tree concept, need of fault-finding activities, show as decision tree, draw decision tools, hydraulic, pneumatic, automotive, thermal and electrica machine tool, ii. Pump iii. Air compressor, iv. Internal com Electrical motors, Types of faults in machine tools and their ge	n tre al eq ibusi	e for uipn tion	prot nent': engir	olems s like, ne, v.
UNIT - V	PERIODIC AND PREVENTIVE MAINTENANCE				9
overhaulin and remed advantage maintenar sets, Prog	nspection-concept and need, degreasing, cleaning and re- g of mechanical components, overhauling of electrical motor dies of electric motor, repair complexities and its use, definition as of preventive maintenance. Steps/procedure for period ace of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Dies gram and schedule of preventive maintenance of mechan t, advantages of preventive maintenance. Repair cycle concept	, cor n, ne ic a el ge ical ot an	nmo eed, nd enera and <u>d im</u>	n tro step: oreve ating elec porta	ubles s and entive (DG) ctrical
COURSE	OUTCOMES				
	of the course, the student will be able to				
	summarize basics of industrial safety				
CO2	describe fundamentals of maintenance engineering				
CO3	explain wear and corrosion				
CO4	illustrate fault tracing				
CO5	identify preventive and periodic maintenance				
REFEREN	ICES:				
	lels, "Pump-hydraulic Compressors", Mc grew Hill Publication, g H P, "Maintenance Engineering ", S. Chand and Company,1				

3. Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.

4.	Higgins & Morrow,	"Maintenance Engineering Handbook", Eighth Edition,2008
CO-P	O Mapping	

<u> </u>	POs										PSOs			
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	1	1	2	-	-	-	1	3	3	3
2	3	3	3	2	1	1	2	-	-	-	1	3	3	3
3	3	3	3	2	1	1	2	-	-	-	1	3	3	3
4	3	3	3	2	1	1	2	-	-	-	1	3	3	3
5	3	3	3	2	1	1	2	-	-	-	1	3	3	3
Avg	3	3	3	2	1	1	2	-	-	-	1	3	3	3

AU23040	INTRODUCTION TO OPERATIONS RESEARCH	L	Т	Ρ	С					
		3	0	0	3					
1. To int servio	BJECTIVES: roduce the concepts in optimization of resources for manuface- based industries.		•							
decis busin	roduce students to use quantities methods and techniques for ions– making; model formulation and applications that are us ess decision problems.	sed i	n so	ving						
apply	nten the students with the various optimization techniques to in industrial operations roduce the concepts in optimization of resources for manufa				and					
service- based industries										
UNIT - I	LINEAR PROGRAMMING PROBLEMS				9					
Standard a	on - Phases - models, LP problems formulation – Graphic nd Canonical forms of LPP- simplex methods- Big M, Tw otimal solutions, Duality in LP.									
UNIT - II	TRANSPORTATION				9					
Balanced a Hungarian r	ion problems- Basic feasible solution, Optimal solution E nd Unbalanced TP, Degeneracy, Production problems. Assig nethod Traveling salesman problems - Sequencing models- hines, n job 3 machines and n job m machines.	gnme	ent p	roble	ems –					
UNIT - III	INVENTORY CONTROL				9					
Types of inv	ventories- Inventory cost - EOQ - Deterministic inventory pro	blen	ns –	Pure	chase					
	tion models with and without shortages-EOQ with price b									
inventory p	roblems - Multi product problems - Systems of inventory	con	trol	(Pa	nd Q					
• /	Determination of buffer stock and re-order levels -Selective	e inv	/ento	ory c	ontrol					
UNIT - IV	(ABC, VED, SDE, etc.) QUEUING THEORY				9					
-	stem - Characteristics - symbols - Poisson process and expo	non	tial c	lictrik						
-Single ser	ver queuing models - Multiserver queuing models, Simula nventory & Queuing problems.									
UNIT - V	PROJECT MANAGEMENT AND REPLACEMENT MODE	LS			9					
PERT techr – Gradual fa	nagement: Network logic – Ford-Fulkerson's rule - AON di niques, Critical path and float calculations Replacement mode ailures-replacement of items: Efficiency deteriorates with tim nd group replacement policies.	ls -ty	/pes	of fa	ilures					
	TO	TAL	: 45	PER	IODS					
	UTCOMES									
	letion of this course, the students will be able to:									
CO1 Recognize the importance and value of Operations Research and mathematical modelling in solving practical problems in industry;										
	ormulate a managerial decision problem into a mathematical	mo	del;							
	nderstand Operations Research models and apply them to r	eal-l	ife p	roble	ems;					
CO4 U	CO4 Understand and apply the operations research techniques in industrial operations.									
CO5 Ir	ntroduce the concepts in optimization of resources for manufa ervice-based industries	actui	ring a	and						
TEXT BOO 1. Ham		2011	, PH	II/Pe	arson					

2. Wayne.L. Winston, "Operations research applications and algorithms",4th edition, 2007, Thomson learning.

REFERENCES:

- 1. Frederick. S. Hiller and Gerald. J. Lieberman, "Operations research concepts and cases", 8th edition (SIE) 2008, TMH.
- 2. G. Srinivasan, "Operations research principles and applications", 2nd edition EEE 2010, PHI.
- 3. J.K. Sharma, "Operations research theory and applications",5Th edition 2013, Macmillan India.
- 4. R. Pannerselvam, "Operations research", 2nd edition 2009, PHI
- 5. Ravindran, Phillips and Solberg, "Operations research principles and practice", 2nd edition 2007, Wiley India.

CO-PO Mapping

<u> </u>	POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	1	1	2	-	-	-	1	3	3	3
2	3	3	3	2	1	1	2	-	-	-	1	3	3	3
3	3	3	3	2	1	1	2	-	-	-	1	3	3	3
4	3	3	3	2	1	1	2	-	-	-	1	3	3	3
5	3	3	3	2	1	1	2	-	-	-	1	3	3	3
Avg	3	3	3	2	1	1	2	-	-	-	1	3	3	3

AU23041	TOTAL QUALITY MANAGEMENT	L	Т	Ρ	С			
	BJECTIVES:	3	0	0	3			
 Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM. Explain the TQM Principles for application. Define the basics of Six Sigma and apply Traditional tools, new tools, Benchmarking and FMEA. Describe Taguchi's Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR. Illustrate and apply QMS and EMS in any organization. 								
UNIT - I	INTRODUCTION				9			
Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality –Definition of TQM Basic concepts of TQM –-Gurus of TQM (Brief introduction) TQM Framework- Barriers to TQM –Benefits of TQM.								
UNIT - II	TQM PRINCIPLES				9			
Leadership - Deming Philosophy, Quality Council, Quality statements and Strategic planning- Customer Satisfaction –Customer Perception of Quality, Feedback, Customer complaints, Service Quality, Kano Model and Customer retention – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition & Reward and Performance AppraisalContinuous process improvement –Juran Trilogy, PDSA cycle, 5S and Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating and Relationship development.								
UNIT - III	TQM TOOLS & TECHNIQUES I				9			
Capability- Mark, Unde data, Using	traditional tools of quality - New management tools - Sench marking - Reasons to benchmark, Benchmarking proce erstanding Current Performance, Planning, Studying Others, g the findings, Pitfalls and Criticisms of Benchmarking - tion, Stages: Design FMEA and Process FMEA.	ess, Lea	Wha rning	t to E g froi	Bench m the			
UNIT - IV	TQM TOOLS & TECHNIQUES II				9			
- Concepts	es – Quality Function Deployment (QFD) - Taguchi quality lo , improvement needs – Performance measures- Cost of Qua							
UNIT - V	QUALITY MANAGEMENT SYSTEM				9			
Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000 ISO 9001 Requirements-Implementation Documentation-Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements o ISO 14001-Benefits of EMS.								
		TAL	: 45	PER	IODS			
Upon comp	DUTCOMES letion of this course, the students will be able to:							
	pply TQM concepts in a selected enterprise.							
cos a	and FMEA.							
CO4 (nderstand Taguchi's Quality Loss Function, Performance Me FD, TPM, COQ and BPR.	easu	res a	ind a	pply			
CO5 a	pply QMS and EMS in any organization.							

TEXT BOOKS:

1. Dale H. Besterfield, Carol B. Michna, Glen H. Bester field, Mary B. Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

REFERENCES:

- 1. Joel. E. Ross, "Total Quality Management Text and Cases", Routledge., 2017.
- 2. Kiran.D. R, "Total Quality Management: Key concepts and case studies, Butterworth Heinemann Ltd, 2016.
- 3. Oakland, J.S. "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, Third Edition, 2003.
- 4. Suganthi, L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.

CO-PO Mapping

CO 2	POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	-	2	1	-	2	1	2	2	1	-	-	3	3	3
2	-	2	1	-	2	1	2	2	1	-	-	3	3	3
3	-	2	1	-	2	1	2	2	1	-	-	3	3	3
4	-	2	1	-	2	1	2	2	1	-	-	3	3	3
5	-	2	1	-	2	1	2	2	1	-	-	3	3	3
Avg	-	2	1	-	2	1	2	2	1	-	-	3	3	3

AU23042	WASTE TO ENERGY	L	Т	P	C				
	OBJECTIVES:	3	0	0	3				
 Interpret the various types of wastes from which energy can be generated Develop knowledge on biomass pyrolysis process and its applications Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio-energy systems and their features 									
UNIT - I	INTRODUCTION TO EXTRACTION OF ENERGY FROM	WAS	STE		9				
	ion of waste as fuel – Agro based, Forest residue, Industrian devices – Incinerators, gasifiers, digestors	al w	aste	- M	SW –				
UNIT - II	BIOMASS PYROLYSIS				9				
– Manufao	 Types, slow fast – Manufacture of charcoal – Methods - Yie ture of pyrolytic oils and gases, yields and applications. 	lds a	and a	applio	cation				
UNIT - III	BIOMASS GASIFICATION				9				
Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.									
UNIT - IV	BIOMASS COMBUSTION				9				
Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.									
UNIT - V	BIO ENERGY				9				
classificat combustic anaerobic	gy system - Design and constructional features - Biomass ro on - Biomass conversion processes - Thermochemical co n - biomass gasification - pyrolysis and liquefaction - bioche digestion - Types of biogas Plants – Applications - Alcoho Bio diesel production -Urban waste to energy conversion e in India	onve mica ol pi	ersion al co rodu	n - nver ction	Direct sion - from				
programm		TAL	: 45	PER	IODS				
COURSE	OUTCOMES								
	pletion of this course, the students will be able to:								
CO1	Understand the various types of wastes from which energy ca	n be	e gen	erat	ed				
CO2	Gain knowledge on biomass pyrolysis process and its applica	tions	3						
CO3	Develop knowledge on various types of biomass gasifiers and	l the	ir op	erati	ons				
CO4	Gain knowledge on biomass combustors and its applications on energy	on g	ener	ating)				
	Understand the principles of bio-energy systems and their fea	ture	s						
REFEREN 1. Biog				i, S.	S.,				
2. Bion	nass Conversion and Technology, C. Y. WereKo -Brobby and ey & Sons, 1996.	E. B	. Ha	gan,	John				
199			Pvt.	Ltd.	,				
4. Non	-Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 19	990.							

COs							POs						PS	SOs
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	3	1	2	1	1	1	1	3	3	3
2	3	3	3	1	3	1	2	1	1	1	1	3	3	3
3	3	3	3	1	3	1	2	1	1	1	1	3	3	3
4	3	3	3	1	3	1	2	1	1	1	1	3	3	3
5	3	3	3	1	3	1	2	1	1	1	1	3	3	3
Avg	3	3	3	1	3	1	2	1	1	1	1	3	3	3

MINOR DEGREE COURSES IN AUTOMOTIVE TECHNOLOGY

AU23043	INTRODUCTION TO AUTOMOBILE ENGINEERING	L	T	P	<u>C</u>				
		3	0	0	3				
	DBJECTIVES: fy various Engine layout and Chassis for vehicles.								
	cognize the construction and working principle of drive lin	e f	inal	drive					
	ential systems.	io, i	inai	anvo					
	view the knowledge about the constructional feature and we	orki	ng p	rincip	ole o				
	ing Systems, Conventional and Independent Suspension Sys			•					
	monstrate working principle of braking system and wheels us								
	nderstand the need for electrical systems in the vehicle and v	work	ing	of mo	oderr				
vehic									
UNIT - I	VEHICLE STRUCTURE AND ENGINE	- End	ninor	. т.	9				
	Automobiles – Types of Automobiles –Chassis– Frame - n and Working Principle - Two and Four Stroke Engines – Sl								
	and CRDI. Emission Norms, Cooling and Lubrication System.		u Oi	Ling	1103-				
UNIT - II	TRANSMISSION SYSTEM	-			9				
	Types of Transmission – Clutch – Types, Gear Box – Types – Working Principle								
Constructio	n, Automatic Transmission – Fluid Coupling, Torque Converte	er. P							
Slip Joint –	Universal Joint, Differential, Final Drive, Rear Axle and its typ	bes	•						
UNIT - III STEERING AND SUSPENSION SYSTEMS									
Steering Geometry- Ackermann and Davis Steering Principle, Steering- Hydraulic and									
Electronic, Suspension System- Types – Conventional and Independent suspension									
UNIT - IV	BRAKE AND WHEELS				9				
	rakes -Construction and Working. Antilock Braking System								
its Classific	Construction of Wheel. Types of Tyres – Tubeless Tyres and	Iu	bed	lyres	s and				
-	UNIT - VAUTOMOTIVE ELECTRICAL AND MODERN VEHICLES9								
Batteries- Lead Acid, Lithium Ion Battery. Starting System. Ignition System-types, Lase									
	ead Acid, Lithium Ion Battery. Starting System. Ignition System				Lase				
Ignition. Ve					Lase				
Ignition. Ve	Lead Acid, Lithium Ion Battery. Starting System. Ignition Syste hicle Lighting- Head Lamp. Automotive Sensors and its types > Vehicle–Types- Fuel Cell Technology.	5. Ne	ed I	For H	Lase lybric				
Ignition. Ve and Electric	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT	5. Ne	ed I	For H	Lase				
Ignition. Ve and Electric COURSE C After compl	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to	5. N€ `AL :	ed : 45	For H	Lase lybric				
Ignition. Ve and Electric COURSE C After compl	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ	5. N€ `AL :	ed : 45	For H	Lase				
Ignition. Ve and Electric COURSE C After compl CO1 A c	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations	a. Ne ⁻AL :	ed f	For H	Lasei lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations interpret different types of drive lines and drives used in Autom	nine	ed f : 45 : thei /e.	For H	Lasei lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO3 E	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations nterpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention	nine	ed f : 45 : thei /e.	For H	Lase				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO3 E ir	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations neterpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention ndependent suspension systems.	nine	ed f : 45 : thei /e. nd	For H	Lase				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO3 E ir CO4 A	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations interpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystems	nine notiv	ed f 45 thei re. nd	For H	Lase lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO3 E ir CO4 A CO5 D	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations neterpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention ndependent suspension systems.	nine notiv	ed f 45 thei re. nd	For H	Lasei lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO3 E ir CO4 A CO5 D	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations neterpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention ndependent suspension systems. pply knowledge on working principles of brake and its subsys memonstrate understanding of Hybrid and Electric vehicle arch neir technologies.	nine notiv	ed f 45 thei re. nd	For H	Lase lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO2 Ir CO3 E ir CO4 A CO5 C tt TEXT BOO 1. Kirpa	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations interpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystem memorstrate understanding of Hybrid and Electric vehicle arch heir technologies. K: I Singh, Automobile Engineering, Standard Publisher, New De	s. Ne TAL: nine notiv notiv nal a sterr nitec elhi,	201	For H	Lase lybric				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO2 Ir CO3 E ir CO4 A CO5 C tt TEXT BOO 1. Kirpa 2. K.K.	ead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations interpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystem meir technologies. K: I Singh, Automobile Engineering, Standard Publisher, New De Ramalingam, "Automobile Engineering", Scitech publication (I	s. Ne TAL: nine notiv al a stem nitec elhi, India	eed f 45 thei re. nd is. 201 a), 2	For H	Lase lybric IODS				
Ignition. Ve and Electric After compl CO1 A CO2 In CO2 In CO3 E ir CO4 A CO5 C tt TEXT BOO 1. Kirpa 2. K.K.I 3. R.K.	Lead Acid, Lithium Ion Battery. Starting System. Ignition System hicle Lighting- Head Lamp. Automotive Sensors and its types vehicle-Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determ haracteristics, advantages and limitations neterpret different types of drive lines and drives used in Autom xamine the working principle of steering systems, convention ndependent suspension systems. pply knowledge on working principles of brake and its subsys memonstrate understanding of Hybrid and Electric vehicle arch neir technologies. K: I Singh, Automobile Engineering, Standard Publisher, New De Ramalingam, "Automobile Engineering", Scitech publication (I Rajput, A Text-Book of Automobile Engineering, Laxmi Public	s. Ne TAL: nine notiv al a stem nitec elhi, India	eed f 45 thei re. nd is. 201 a), 2	For H	Lase lybric IODS				
Ignition. Ve and Electric After complete CO1 A CO2 Ir CO3 E ir CO3 E ir CO4 A CO5 C tt TEXT BOO 1. Kirpa 2. K.K. 3. R.K. Limite	Lead Acid, Lithium Ion Battery. Starting System. Ignition Systemicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle-Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determinations interpret different types of drive lines and drives used in Automic xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystem technologies. K: I Singh, Automobile Engineering, Standard Publisher, New Der Ramalingam, "Automobile Engineering", Scitech publication (I Rajput, A Text-Book of Automobile Engineering, Laxmi Public ed, 2015	s. Ne TAL: nine notiv al a stem nitec elhi, India	eed f 45 thei re. nd is. 201 a), 2	For H	Lase lybric IODS				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO2 Ir CO3 E ir CO4 A CO5 D th TEXT BOO 1. Kirpa 2. K.K.I 3. R.K. Limite 4. Jack	Lead Acid, Lithium Ion Battery. Starting System. Ignition Systemicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determinated haracteristics, advantages and limitations nterpret different types of drive lines and drives used in Automic xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystems phemore the understanding of Hybrid and Electric vehicle archine ir technologies. K: I Singh, Automobile Engineering, Standard Publisher, New Der Ramalingam, "Automobile Engineering", Scitech publication (I Rajput, A Text–Book of Automobile Engineering, Laxmi Public ed, 2015 Erjavec, Automotive Technology,3rd Edition.	s. Ne TAL: nine notiv al a stem nitec elhi, India	eed f 45 thei re. nd is. 201 a), 2	For H	Lase lybric IODS				
Ignition. Ve and Electric After compl CO1 A CO2 Ir CO2 Ir CO3 E ir CO4 A CO5 C t TEXT BOO 1. Kirpa 2. K.K.I 3. R.K. Limite 4. Jack	Lead Acid, Lithium Ion Battery. Starting System. Ignition Systemicle Lighting- Head Lamp. Automotive Sensors and its types Vehicle–Types- Fuel Cell Technology. TOT OUTCOMES eting the course, the student will able to ssess and critically evaluate various Engine concepts, determinated haracteristics, advantages and limitations nterpret different types of drive lines and drives used in Automic xamine the working principle of steering systems, convention independent suspension systems. pply knowledge on working principles of brake and its subsystems phemore the understanding of Hybrid and Electric vehicle archine ir technologies. K: I Singh, Automobile Engineering, Standard Publisher, New Der Ramalingam, "Automobile Engineering", Scitech publication (I Rajput, A Text–Book of Automobile Engineering, Laxmi Public ed, 2015 Erjavec, Automotive Technology,3rd Edition.	s. Ne TAL: nine notiv al a stem nitec lndia catio	eed f 45 thei re. nd is. 201 a), 2 ons f	For H	Lase lybrid IODS				

3. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.

4. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007.

5. William H Crouse, "Automotive Mechanics", The McGraw-Hill companies, 2007.

CO-PO Mapping

60 2		POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	2	3	1	2	1	2	2	1	3	3	3	
2	3	3	3	2	3	1	2	1	2	2	1	3	3	3	
3	3	3	3	2	3	1	2	1	2	2	1	3	3	3	
4	3	3	3	2	3	1	2	1	2	2	1	3	3	3	
5	3	3	3	2	3	1	2	1	2	2	1	3	3	3	
Avg	3	3	3	2	3	1	2	1	2	2	1	3	3	3	

		L	Т	Р	С				
AU23044	BASICS OF AUTOMOTIVE ENGINES	3	0	0	3				
COURSE O	BJECTIVES:								
	arning objective of this course is				_				
	rt knowledge on basics of automotive SI and CI er	ngines	constr	uction	and				
working	erstand the engine induction and ignition systems a	nd ite	functio	nal					
z. requirer			Iunclio	llai					
	the properties of gasoline and diesel fuel and con	nbustic	n proc	ess inv	olved in				
diesel engines.									
4. To impart the knowledge on engine cooling and lubrication requirements also to									
understand the requirements of supercharger and turbocharger.									
5. To analyze the performance characteristics of SI and CI engine and learn modern									
	ments in IC engine.								
UNIT - I	ENGINE FUNDAMENTALS				9				
	- classifications – Terminology - Engine compone								
	Working principle - valve and port timing diagram								
	e Cycles- Air Standard cycles – Otto Cycle-Fuel–a ating parameters -Engine emissions –Two stroke								
	Problems on cycles.	crigine	,3 – ty	JC3-101					
UNIT - II	INDUCTION AND IGNITION SYSTEM				9				
Carburettors	- requirements - working principles, types, differ	ent cir	cuits -	· comp	ensation				
and maximum power devices – Fuel air ratio calculation - Requirements and objective of									
diesel fuel i	njection system - types of injection - Jerk and o	distribu	itor typ	e pur	ips, Unit				
•	nmon rail direct injection Electronic fuel injection			•	•				
	is. Types of injection nozzle, Split and Multiple								
•	governors. Problems on fuel injection. Ignition s	•		ion an	d types-				
	rol mechanism – Electronic ignition system. Laser FUEL PROPERTIES AND COMBUSTION OF F		1.		9				
-	on Hydrocarbon fuels- Gasoline and Diesel fuel pro		s Octa	ano ano	_				
	aboratory tests for diesel fuel. Combustion stoich								
	ages - Abnormal combustion- combustion chambe								
•	es – Flame structure and Speed - Cyclic variations								
HRR curve	for SI engine and CI Engine - Importance o	f air r	notion	–Swirl,	Squish				
	SI and CI engine stages of combustion. Delay per								
	k formation in CI engines. Comparison of knock in								
•	ction combustion chambers for diesel combustion	n. Cha	mbers	tor SI	and CI				
engine comb									
UNIT - IV	SUPERCHARGING, TURBOCHARGING				9				
	tem - Function - types - Heat transfer analysis a								
	ubrication system- Function- types - Lubricant F								
Introduction and its requirements - Thermodynamic cycle analysis for super charged engine.									
	superchargers - Modification of an engine for								
	ng on engine performance. Turbocharger – c turbocharger E-Turbocharger. Problems.	onstruc		and wo	Jiking –				
	ENGINE HEAT TRANSFER, TESTING AND RE	CENT			0				
UNIT - V	DEVELOPMENTS				9				
•	of heat transfer- Modes of heat transfer- heat t			•	•••				
	licated and brake MEP, operating variables that af		•	•					
	e and stationary diesel engine testing and stand – Variables affecting engine performance – M								
0110101010105	vanables anceany engine performance - IV		5 10 11	npiove	Chyine				

performance - Introduction to Stratified charge engine, LHR engines, HCCI and RCCI engines. Variable valve timing.

	TOTAL: 45 PERIODS						
COURSE OUTCOMES							
Upon compl	etion of the course, students will be able to						
CO1	Understand and remember engine glossaries, identify various components of						
COT	SI and CI engines and its principle of working.						
CO2	Define and interpret the knowledge on fuel induction system.						
	Illustrate and correlate the knowledge on engine combustion and its various						

CO3	Illustrate and correlate the knowledge on engine combustion and its various effects.
004	Explain and apply their knowledge in analyzing the requirement of engine

CO4	sub systems.
CO5	Analyze and Evaluate engine performance and exposed to gain knowledge
005	on recent developments of prime sources.

TEXT BOOKS:

- 1. V. Ganesan, Internal Combustion Engines, Tata-McGraw Hill Publishing Co., New Delhi.
- 2. John B. Heywood, "Internal Combustion Engines", McGraw-Hill Book Company, ISBN No: 0-07-100499-8
- 3. M.L. Mathur and R.P. Sharma, Internal Combustion Engine, Dhanpath Rai Publications (P) Ltd, New Delhi-110002.

REFERENCES:

- 1. Heinz Heisler, Advanced engine technology. Butterworth Heinemann publications
- 2. Heldt, P.M., High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta,
- 3. K.K. Ramalingam, internal Combustion Engines, Sci Tech Publications, Chennai,2003.
- 4. Maleev, V.M, Diesel Engine Operation and Maintenance, McGraw-Hill, 1974.
- 5. Obert, E.F. Internal Combustion Engine analysis and Practice, International Text Book Co., Scranton, Pennsylvania, 1988.

CO-PO Mapping

CO 2							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	1	2	2	1	2	2	-	3	3	3
2	3	3	3	3	1	2	2	1	2	2	-	3	3	3
3	3	3	3	3	1	2	2	1	2	2	-	3	3	3
4	3	3	3	3	1	2	2	1	2	2	-	3	3	3
5	3	3	3	3	1	2	2	1	2	2	-	3	3	3
Avg	3	3	3	3	1	2	2	1	2	2	-	3	3	3

1 - Slight, 2 - Moderate,	3 – Substantial
---------------------------	-----------------

411000.45		L	Т	Р	С							
AU23045	VEHICLE CHASSIS	3	0	0	3							
The main lea 1. To und steerin during 2. To rec differe 3. To rev tyres. 4. To eva system 5. To der UNIT - I Types of Ch frames, Loa testing of fra	monstrate working principle of braking system used INTRODUCTION, FRAME, STEERING SYSTEM assis layout with reference to Power Plant location ids acting on vehicle frame, Constructional detail ames, Types of Front Axles and Stub Axles, Front	3 e fram rolling ive line e of rea and ind d in au l n and o s and Whee	0 es, fror motior e, final ar axle lepend tomobi drive, v materi I Geom	0 nt axles of wh drive a , wheel ent sus le. various als for netry, 0	3 s, eels and s and spension 9 types of frames, condition							
Mechanisms	olling Motion of Wheels during Steering, Acker s, Steering Linkages, Different Types of Steering Go Steer, Reversible and Irreversible Steering, EPAS.	ears, S										
UNIT - II	PROPELLER SHAFT AND FINAL DRIVE				9							
radius rods a drive types,	ving Thrust, torque reactions and side thrust, Hotch and stabilizers, Propeller Shaft, Universal Joints, Co Double reduction and twin speed final drives, Diff d differential.	onstan	t Veloc	ity Joir	nts, Final							
UNIT - III	AXLES, WHEELS AND TYRES				9							
Floating, Th Types and C	n and Design of Drive Axles, Types of Loads ac nee–Quarter Floating and Semi–Floating Axles, Constructional Details of Different Types of Wheels their constructional details.	Axle H	Housing	gs and	Types,							
UNIT - IV	SUSPENSION SYSTEM				9							
characteristi	uspension System, Types of Suspension Springs ics of Single Leaf, Multi–Leaf, Coil, Torsion bar, Ru spension Spring Systems, Independent Suspension	ubber,	Pneum	natic ar	nd Hydro							
UNIT - V	BRAKING SYSTEM				9							
Weight Tran Braking Toro Types and	utomobile Braking, Stopping Distance Time and Insfer during Braking, Theory of Drum Brakes, Le que, Constructional Details of Drum Brake and its Ac Construction, Hydraulic Braking System, Me Braking System, Anti–Lock Braking System.	eading ctivato chanic	i and rs, Disc cal Br	Frailing Brake aking	Shoes, Theory, System,							
		-	TOTAL	.: 45 P	ERIODS							
COURSE O												
	etion of the course, students will be able to	00	al : ^ :	10-00-1								
CO1 CO2	Identify the different types of chassis layout, fram Appraise different types of drive line systems and used in Automotive.											
CO3	Acquire knowledge about different types of front a	axle ar	nd rear	axles,	wheel							
	Acquire knowledge about different types of front axle and rear axles, wheel and tyre used in motor vehicles. Expose to the working principle of conventional and independent suspension											

CO)5	Analyze working principles of brake and its subsystems.
TEXT	воок	S:
1.	Kirpa	I Singh, Automobile Engineering, Standard Publisher, New Delhi, 2017
2.	K.K.	Ramalingam, "Automobile Engineering", Scitech publication (India), 2011.
3.	R.K.	Rajput, A Text–Book of Automobile Engineering, Laxmi Publications Private
	Limite	ed, 2015
REFE	RENC	ES:
1.	Heinz	z Hazler, Modern Vehicle Technology, Butterworth, London, 2005.
2.	Heldt	P.M., Automotive Chassis, Chilton Co., New York, 1990
3.	Newt	on Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London,
	2005	
4.	N.K.	Giri, Automotive Mechanics, Kanna Publishers, 2007
5.	Willia	m. H. Crows – Work shop Manuel – 2005
CO-PO	О Мар	ping

<u> </u>							POs						PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
2	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
3	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
4	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
5	3	3	3	3	3	2	1	1	2	2	-	3	3	3	
Avg	3	3	3	3	3	2	1	1	2	2	-	3	3	3	

AU23046	VEHICLE DRIVELINE SYSTEMS	L	Т	Ρ	С
		3	0	0	3
	BJECTIVES:		ala:-'	4h c	
	e of this course is to prepare the students to gain k struction and principle of mechanical transmission o				and
gear	• •	Jounho	nems		anu
•	odynamic devices hydrostatic devices				
•	matic transmission system, Electric drive used in ro	oad ve	hicles.		
UNIT - I	CLUTCH				9
Requireme	nt of transmission system, Types of transmission s	ystem	, Requ	iremen	t of
Clutches –	Functions-Types of clutches, construction and ope	ration	of Sing	gle plat	e, multi
plate and D	piaphragm Spring clutches. Centrifugal clutch, Elec	tromag	gnetic (clutch.	
UNIT - II	GEAR BOX				9
	gear box. Construction and working principle				
	h gear boxes, Automatic manual transmission. Ir				
	erical examples on performance of automobile suc				
	ort, Engine speed & power and acceleration. Detenic applications.	ermina	tion of	gear r	atios for
UNIT - III	HYDRODYNAMIC TRANSMISSION				9
• • • • • • • • • • • • • • • • • • • •	ng – principles - Performance characteristics – adv	antad	as _ lin	nitation	-
	eduction of drag torque. Torque converter -				
	cs – advantages – limitations – multistage and poly				
UNIT - IV	HYDROSTATIC DRIVE				9
Hydrostatic	drive; various types of hydrostatic systems – Princi	ples o	f Hydro	ostatic	drive
	vantages and limitations. Comparison of hydrostati				
- i					
drive, constr	uction and working of typical Janny hydrostatic driv			, , 	
UNIT - V	AUTOMATIC TRANSMISSION AND ELECTRIC	DRIV	E		9
UNIT - V Wilson gear	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo	DRIVI oglide"	E transn	nission	. – Four
UNIT - V Wilson gear speed long	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyd	DRIVI oglide" draulic	E transn contr	nission ol sys	. – Four tems of
UNIT - V Wilson gear speed long automatic tra	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C	DRIVI oglide" draulic CVT) –	E transn contr – type:	nission ol sys s – Op	. – Four tems of erations.
UNIT - V Wilson gear speed long automatic tra DCT, Electri	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War	DRIVI oglide" draulic CVT) –	E transn contr – type:	nission ol sys s – Op	. – Four tems of erations.
UNIT - V Wilson gear speed long automatic tra DCT, Electri	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C	DRIVI oglide" draulic CVT) – d Leo	E transn contr – type: nard C	nission ol sys s – Op control	. – Four tems of erations. System-
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives.	DRIVI oglide" draulic CVT) – d Leo	E transn contr – type: nard C	nission ol sys s – Op control	. – Four tems of erations.
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives.	DRIVI oglide" draulic CVT) – d Leo	E transn contr – type: nard C	nission ol sys s – Op control	. – Four tems of erations. System-
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to:	DRIVI oglide" draulic CVT) – d Leo	E transn contr – type: nard C	nission ol sys s – Op control : 45 P	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario	DRIVI oglide" draulic CVT) – d Leo d Leo	E transn contr – type: nard C FOTAL	nission ol sys s – Op control : 45 P	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli	DRIVI oglide" draulic CVT) – d Leo us type ication	E transn contr – type: nard C FOTAL es of c s	nission ol sys s – Op control : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic	DRIVI oglide" draulic CVT) – d Leo us type ication	E transn contr – type: nard C FOTAL es of c s	nission ol sys s – Op control : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyd ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives	DRIVI oglide" draulic CVT) – d Leo us type ication	E transn contr – type: nard C FOTAL es of c s missior	nission ol sys s – Op control : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic	DRIVI oglide" draulic CVT) – d Leo us type ication	E transn contr – type: nard C FOTAL es of c s missior	nission ol sys s – Op control : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO3 CO4 CO5 TEXTBOOK	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S:	DRIVI oglide" draulic CVT) – rd Leo us type ication transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO3 CO4 CO5 TEXTBOOK 1. Hein	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appl Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit	DRIVI oglide" draulic CVT) – rd Leo us type ication transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyd ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann	DRIVI oglide" draulic CVT) – d Leo d Leo us type ication transm transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein 2. T. K.	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann Garrett K. Newton W. Steeds," Motor Vehicle", 135	DRIVI oglide" draulic CVT) – d Leo d Leo us type ication transm transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein 2. T. K.	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyd ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann	DRIVI oglide" draulic CVT) – d Leo d Leo us type ication transm transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein 2. T. K.	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann Garrett K. Newton W. Steeds," Motor Vehicle", 135 emann	DRIVI oglide" draulic CVT) – d Leo d Leo us type ication transm transm	E transn contr – type: nard C FOTAL es of c s mission	nission ol sys s – Op ontrol : 45 P lutches	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein 2. T. K. Hein	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann Garrett K. Newton W. Steeds," Motor Vehicle", 135 emann	DRIVI oglide" draulic CVT) – d Leo d Leo us type ication transm transm tion,20	E transn contr – type: nard C FOTAL es of c s mission nission	nission ol sys s – Op ontrol : 45 P lutches s and e tterwo 00, Bu	. – Four tems of erations. System- ERIODS
UNIT - V Wilson gear speed long automatic tra DCT, Electri Advantages COURSE O At the end o CO1 CO2 CO3 CO4 CO5 TEXTBOOK 1. Hein Hein 2. T. K. Hein REFERENC 1. Crou	AUTOMATIC TRANSMISSION AND ELECTRIC box-Cotal electric transmission. Chevrolet "Turbo itudinally mounted automatic transmission -Hyo ansmission. Continuously Variable Transmission (C ic drive-types- Principle of early and modified War & limitations -Modern electric drives. UTCOMES f the course, students will be able to: Understand the construction and working of vario Determine the gear ratio for different vehicle appli Describe the types and principle of hydrodynamic Compare Hydrostatic and hydrodynamics drives Identify the differences among various automatic drive. S: z Heisler, "Advanced Vehicle Technology",2nd Edit emann Garrett K. Newton W. Steeds," Motor Vehicle", 13 emann	DRIVI oglide" draulic CVT) – d Leo us type ication transm transm tion,20 th Edit	E transn contr – type: nard C FOTAL es of c s mission nission	nission ol sys s – Op ontrol : 45 P lutches s and e tterwo 00, Bu	. – Four tems of erations. System- ERIODS

3. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals", CRC PRESS Boca Raton London New York Washington, D.C.

CO-PO Mapping

CO 2							POs						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	1	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

AU02047		L	Т	Р	С
AU23047	FUNDAMENTALS OF VEHICLE BODYWORK	3	0	0	3
	BJECTIVES:				
	arning objective of this course is				
	sign and analyze Car body				
	sign and analyze of Bus body				
	sign and compare different Commercial vehicles				
	alyze the Vehicle Aerodynamics				
<u>5.</u> To imp UNIT - I	prove Ergonomics CAR BODY DETAILS				9
-	r body - Saloon, convertibles, Limousine, Estate V	an Ra	cing a	nd Spc	_
car body ter tests for visi	minology - Visibility- regulations, driver's visibility, i bility. Driver seat design -Car Body Construction -	improv Variou:	ement	in visit	oility and
	rials. Safety: Safety design, safety equipment for c	ars			
UNIT - II	BUS BODY DETAILS				9
Types of bus	s body: based on capacity, distance travelled and b	ased o	on cons	structic	n. – Bus
	it, floor height, engine location, entrance and ex				of metal
	d – Regulations – Constructional details: Convent	ional a	nd inte	gral.	
UNIT - III	COMMERCIAL VEHICLE DETAILS				9
	mmercial vehicle bodies - Light commercial vehicle				
•	rm body, Tipper body and Tanker body – Dimensio	ns of d	river's	seat in	relation
	Driver's cab design.				
UNIT - IV	VEHICLE AERODYNAMICS				9
Objectives, '	Vehicle drag and types. Various types of forces and	d mom	ents. E	ffects	of forces
	ts. Various body optimization techniques for min				
	operation, Types. Wind tunnel testing such as: Fl				
tunnel balan		ind mo	ments	by us	ing wind
UNIT - V	VEHICLE ERGONOMICS				9
Designing V	to Automotive Ergonomics, Ergonomics in Vehicl ehicles, Occupant Package, Controls and Display v - styling in automotive design.	/s Inter	face -	Introd	uction to
			OTAL	.: 45 P	ERIODS
COURSE O					
	etion of the course, students will be able to				
CO1	Analyze different aspects of car body.				
CO2	Analyze different types bus body.				
CO3	Compare and analyze different types of comme	rcial ve	hicles		
CO4	Analyze the role of various aerodynamic forces a instruments in vehicle body design.	nd moi	nents,	measu	uring
CO5	Create new Ergonomic designs.				
TEXTBOOK	S:				
1. Dieler A	nselm., "The passenger car body", SAE Internatio	nal, 20	00		
2. James	E Duffy, "Body Repair Technology for 4-Wheelers"	, Ceng	age Le	earning	,2009.
	ki, J., "Vehicle Body Engineering", Business Books	<u>Ltd.,</u>	968.		
REFERENC	ES:				
	waite, J.B., "Vehicle Body building and drawing", H .ondon, 1997.	leinem	ann Eo	ducatio	nal Book
3. John	G.J., "Body construction and design", Illiffe Books Fenton, "Vehicle Body layout and analysis", Mech				
Londo	n,1992.				

 Vivek D. Bhise," Ergonomics in The Automotive Design Process", CRS Press,2016William. H. Crows – Work shop Manuel – 2005

CO-PO Mapping

COs							POs						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	3	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

AU23048 VEHICLES COURSE OBJECTIVES: The main learning objective of this course is to prepare the stude 1. General aspects of Electric and Hybrid Vehicles (EHV), in modelling, sizing, sub-system design and hybrid vehicle of 2. Understand about vehicle dynamics, 3. Design the required energy storage devices, 4. Select the suitable electric propulsion systems and 5. Understand of hybrid electric vehicles.	ncludi		0	3
 The main learning objective of this course is to prepare the stude General aspects of Electric and Hybrid Vehicles (EHV), in modelling, sizing, sub-system design and hybrid vehicle of Understand about vehicle dynamics, Design the required energy storage devices, Select the suitable electric propulsion systems and 	ncludi			
 General aspects of Electric and Hybrid Vehicles (EHV), in modelling, sizing, sub-system design and hybrid vehicle of 2. Understand about vehicle dynamics, Design the required energy storage devices, Select the suitable electric propulsion systems and 	ncludi			
 modelling, sizing, sub-system design and hybrid vehicle of 2. Understand about vehicle dynamics, 3. Design the required energy storage devices, 4. Select the suitable electric propulsion systems and 		ng ar	obitooti	Iroo
 Understand about vehicle dynamics, Design the required energy storage devices, Select the suitable electric propulsion systems and 	Jonure	•	chilecti	iles,
 Design the required energy storage devices, Select the suitable electric propulsion systems and 		Л.		
4. Select the suitable electric propulsion systems and				
UNIT - I NEED FOR ALTERNATIVE SYSTEM				9
Need for hybrid and electric vehicles – main components and wo	orkina	princ	iples of	a hvbrid
and electric vehicles, Different configurations of hybrid and elec	•	•	•	•
study of diesel, petrol, hybrid, fuel-cell and electric Vehicles. Ac				•
of hybrid and electric Vehicles. Case study on specification of el		•		
UNIT - II DESIGN CONSIDERATIONS FOR ELECTRIC VEI				9
Design requirement for electric vehicles- Range, maximum vehicles-			leratio	-
requirement, mass of the vehicle. Various Resistance- Transm				
vehicle chassis and Body Design, Electric Vehicle Recharging ar			-	
UNIT - III ENERGY STORAGE DEVICES AND SOURCES			ig offer	9
Battery Parameters Different types of batteries. Battery Che	mietr	v Rat	ttory M	_
Battery Management System, Thermal Management system. L		-	-	-
Characteristics - Fuel cell types- Electrolytic reactions of fuel cell		•		
UNIT - IV MOTORS AND CONTROLLERS	. 001	Oner	motry.	9
Types of Motors, Characteristic of DC motors, AC single phase	and	13-nh	250 m	-
motors, switched reluctance motors, BLDC motor, Motor Drive		•		
Torque Vectoring, Regenerative Braking. Rectifiers, Inverters, DC		•		nuoners,
UNIT - V SUBSYTEMS OF HYBRID AND ELECTRIC VEHIC			criters.	9
Power Split devices for Hybrid Vehicles - Operation modes - Co			anias fr	_
Vehicle- Economy of hybrid Vehicles.		onan	Sylc3 IC	Л Пурпа
	т	ΟΤΔΙ	· 45 P	ERIODS
COURSE OUTCOMES	<u> </u>		45 1	
Upon completion of this course, the students will be able to				
CO1 Understand working of different configurations of hy	vbrid	and e	lectric	vehicles
Design and develop basic schemes of electric vehic	·			
CO2 vehicles.		and ny		ootno
CO3 Choose proper energy storage systems for EV appl	licatio	ons		
Choose a suitable drive scheme for developing an			orid veh	nicle
CO4 depending on resources	01000	lo nyc		
I Inderstand basic operation of power-split device a	nd co	ontrol	Strateg	ies for
CO5 hybrid electric vehicle			0	
TEXTBOOKS:				
1. James Larminie and John Lowry, "Electric Vehicle Techn	ology	/ Expla	ained "	John
Wiley & Sons,2003			0 F 6	
2. Iqbal Husain, "Electric and Hybrid Vehicles-Design Funda	amen	tals",	CRC	
Press,2003				0.5.0
3. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fu	uel Ce	ell Vel	hicles",	CRC
Press,2005				

REFERENCES:

- 1. Ron HodKinson, John Fenton, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication,2005
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications,2005

CO-PO Mapping

<u> </u>	COs POs												PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

EMERGING TECHNOLOGY COURSE

41100504	FUNDAMENTALS OF DATA SCIENCE												
AU23E01	FUNDAMENTALS OF DATA SCIENCE	3	0	0	3								
	BJECTIVES:	_											
	arning objective of this course is to prepare the student	ts for											
	rly demonstrate the data collection methods.												
	ect, investigate, clean, munge, and alter data. Data Visualization techniques to explore data.												
	regression and classification models and evaluate it												
	ement suitable data science application												
UNIT - I	INTRODUCTION				9								
Introduction	to Data Science - Overview of Data - Sources of Data	- Typ	es of	Data	– Small								
Data and Big Data - Data collection methods - Surveys - Interviews - Log and Diary data -													
User studies in Lab and Field - Web Scraping - Public datasets - Data cleaning - Tools for													
Data Science.													
UNIT - II DESCRIPTIVE DATA ANALYSIS 9													
	nstruction - Sampling of data - Stem and Leaf Plots -												
	- Central Tendency Measures of the location of data -												
	analysis - Data reduction techniques - Principal	•		nt ana	alysis –								
	t component analysis – Hypothesis testing – Statistical	Test	S		[
UNIT - III	DATA VISUALIZATION				9								
	python libraries matplotlib and seaborn - Histogram -												
•	and violin plots - Regression plots - Heatmaps - Clus			ices -	- Three-								
	I plot - Surface and Contour plot - Geographic data visi	ualiza	tion		_								
-	PREDICTIVE ANALYTICS AND EVALUATION				9								
Classificatio classification Cross-valida	f Machine learning concepts – Model construction n models - Linear regression and multiple regre n models - Comparison models - Training Data constr ation techniques - Accuracy metrics for evaluation of	essior ructio	n mo n - No	dels ormali	 KNN zation - 								
	curve, Precision-recall curves - A/B testing				0								
UNIT - V	DATA SCIENCE APPLICATIONS	4:	Curat		9								
Developmer Customer S	ection, Stock Market; Personalized Recommendant t using Data Analytics, Analytics for Campaigns - Targent egmentation, Medical Image Analysis and Diagnosis, ement, Customer Sentiment Analysis, Natural Languag Chabot.	geted Drug	mark Disco	eting overy,	Patient								
		TO	TAL:	45 PE	RIODS								
COURSE O													
	etion of this course, the students will be able to												
CO1	Clearly demonstrate the data collection methods.												
CO2	Collect, investigate, clean, munge, and alter data.												
CO3	Use Data Visualization techniques to explore data.												
CO4	Use regression and classification models and evaluat	e it											
CO5	implement suitable data science application												
Pres 2. Grus	ag Shah, A Hands-on Introduction to Data Science, Ca s, UK, 2020 s, Joel, Data science from scratch: first principles with p		•		ity								
Medi	ia,2019.												

- 3. Aragues, A. Visualizing Streaming Data: Interactive Analysis beyond Static Limits. O'Reilly Media, Inc, 2018.
- 4. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems O'Reilly Media, 2017.
- 5. Wes McKinney, Python for Data Analysis, 3rd Edition, O' Reilly, 2022
- 6. T.V. Geetha and S. Sendhil kumar, Machine Learning: Concepts, Techniques and Applications, 1st Edition, CRC Press, Taylor and Franics, 2022.

CO 2							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	2	1	2	1	2	3	3	3	2	2
2	3	3	3	3	2	1	2	1	2	3	3	3	2	2
3	3	3	3	3	2	1	2	1	2	3	3	3	2	2
4	3	3	3	3	2	1	2	1	2	3	3	3	2	2
5	3	3	3	3	2	1	2	1	2	3	3	3	2	2
Avg	3	3	3	3	2	1	2	1	2	3	3	3	2	2

		L	Т	Р	С
AU23E02	FUNDAMENTALS OF DEEP LEARNING	3	0	0	3
COURSE O	BJECTIVES:		l		
	arning objective of this course is to prepare the stud				
	o Understand the role of Deep Learning in Machine				
	o get familiar with using Tensor Flow / Keras in Dee		rning A	pplicat	lions
	o design and implement Deep Learning Application o Analyze Different Deep Learning Models in Image		tod Dr	ojecte	
	b design and implement Convolutional Neural Netwo		licuiri	ojecis.	
UNIT - I	BASICS OF NEURAL NETWORKS				9
	ept of Neurons–Perceptron Algorithm–Feed Forw	ard a	nd Ba	ck Pro	
Networks					
UNIT - II	CONVOLUTIONAL NEURAL NETWORKS				9
	itectures – Convolution – Pooling Layers – T	ransfe	r Leai	ning -	- Image
Classification	on using Transfer Learning.				
UNIT - III	ADVANCED DEEP LEARNING ARCHITECTUR	ES			9
	J, Encoder/Decoder Architectures – Autoencode				•
0	Contractive- Variational Autoencoders – Adversa	arial G	enerat	ve Net	tworks –
Autoencode					•
UNIT - IV	DEEP REINFORCEMENT LEARNING				9
	to Reinforcement Learning – Deep Q Networks – Na c Method – Introduction to Deep Belief Networks	aive R	EINFO	RCEA	lgorithm
	APPLICATIONS OF DEEP LEARNING				9
	nentation – Object Detection – Automatic Image Cap	otionin	a Im		-
• •	tive Adversarial Networks – Video to Text with LSTN		•	•	
	er Vision –Analysis using Recursive Neural Netwo				
-	 Transformers like BERT 			,	
			ΓΟΤΑΙ	.: 45 P	ERIODS
COURSE O					
	etion of this course, the students will be able to	_			
CO1	Understand the role of Deep Learning in Machine				
CO2	get familiar with using Tensor Flow / Keras in Dee	ep Lea	rning A	Applica	tions
CO3	design and implement Deep Learning Application				
CO4	Critically Analyze Different Deep Learning Models Projects.	s in Im	age–R	elated	
CO5	design and implement Convolutional Neural Netw	orks			
REFERENC					
	ood Fellow, Yoshua Bengio, Aaron Courville, "Deep	b Lear	ning," I	AIT Pre	ess,
2017 2 France	ois Chollet, "Deep Learning with Python," Manning	Dublic	otiona	2010	
	n, "Matlab Deep Learning: With Machine Learning.				nd
	al Intelligence," Apress, 2017	, riour			iid.
	ohn," Deep Learning Illustrated: A Visual, Interacti	ve Gui	ide to A	Artificia	I
	jence," Addison-Wesley, 2020.				
5. Andre	w Glassner, "Deep Learning – A visual Approach,"	No St	arch P	ress, 2	021

<u> </u>													PSOs	
COS	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	
1	2	2	1	3	2	1	2	1	2	1	3	3	2	2
2	2	2	1	3	2	1	2	1	2	1	3	3	2	2
3	2	2	1	3	2	1	2	1	2	1	3	3	2	2
4	2	2	1	3	2	1	2	1	2	1	3	3	2	2
5	2	2	1	3	2	1	2	1	2	1	3	3	2	2
Avg	2	2	1	3	2	1	2	1	2	1	3	3	2	2

1 –	Slight,	2 –	Moderate,	3 –	Substantial
-----	---------	-----	-----------	-----	-------------

	INTRODUCTION TO ARTIFICIAL											
AU23E03	INTELLIGENCE	3	0	0	3							
COURSE O	BJECTIVES:				1							
	arning objective of this course is to prepare the stu											
	o relate the type of agents and environments in the				DS							
	o analyze different search techniques with comput			•								
	o understand the working of Bayesian techniques t o use the decision-making process to solve simple		•									
	o understand the different learning techniques	anu c	ompiez		51115							
UNIT - I	INTELLIGENT AGENTS AND SEARCH TECHN	IQUES	5		9							
Agents and	Environments - Good Behavior: The concepts of	Ration	ality –	The Na	ature of							
Environme	nts – The Structure of Agents, Problem solving - Sc	lving p	oroblem	ns by s	earching							
- Search i	n Complex Environments - Adversarial Search	n and	game	s - C	onstraint							
Satisfactior	Problem											
UNIT - II	KNOWLEDGE AND REASONING				9							
0 0	nts - Propositional Logic - Theorem proving, Fire		0									
	Knowledge Engineering in First Order Logic, Info				•							
	naining -Backward Chaining - Resolution, Kno		· ·									
-	Engineering - Categories and Objects - Events -		-		d Modal							
	soning System for Categories - Reasoning with De	fault In	format	ion	-							
UNIT - III	BAYESIAN NETWORKS				9							
	aphical Models – Bayesian Networks – Exploiting	•		•								
	utions to Graphs – Inference in Graphical Models	-										
	inative model - Maximum-likelihood parameter lea	ming:	Contin	uous r	nodels –							
· · ·	rameter learning - Bayesian linear regression DECISION MAKING/ DECISION PROCESS				•							
UNIT - IV	DECISION MAKING/ DECISION PROCESS	aiaian	notwo		9							
	Making Complex Decisions: Sequential Decision											
	dit Problems - partially observable MDPs - Algorit			•								
Reinforceme				ing i O								
UNIT - V	AI APPLICATIONS				9							
	model deployment - Containers - Dockers - Disc	cussior	n of Al	Applic	-							
	guage Processing - Chatbots - Dialog Flow - Imag											
	yment with containers such as Docker											
•	*	-	TOTAL	.: 45 P	ERIODS							
COURSE O	UTCOMES											
Upon compl	etion of this course, the students will be able to											
CO1	Relate the type of agents and environments in the				os							
CO2	Analyze different search techniques with compute											
CO3	Understand the working of Bayesian techniques t	o solv	e Al pr	oblems	6							
CO4	Use the decision-making process to solve simple	and co	omplex	proble	ems							
CO5	Understand the different learning techniques											
REFERENC												
	J. Russell, Peter Norvig, Artificial Intelligence – A	Moder	n Appr	oach, I	Pearson							
	tion, 4th Edition, 2021	11.4.19		-	F aller							
	Rich, Kevin Knight, Shivashankar B. Nair, Artificia	i intelli	igence	, i nird	Ealtion,							
	/IcGraw-Hill, 2008. bak Khemani, "A First Course in Artificial Intelligenc	e" Ma	Graw-	Hill 20	13							
		, ivic	-01aw	, ini, 20	10							

COs							POs						PS	SOs
COS	1 2 3 4 5 6 7 8 9 10 11										12	1	2	
1	3	3	1	3	2	1	2	3	2	3	3	3	2	2
2	3	3	1	3	2	1	2	3	2	3	3	3	2	2
3	3	3	1	3	2	1	2	3	2	3	3	3	2	2
4	3	3	1	3	2	1	2	3	2	3	3	3	2	2
5	3	3	1	3	2	1	2	3	2	3	3	3	2	2
Avg	3	3	1	3	2	1	2	3	2	3	3	3	2	2

1	– Slight,	2 –	Moderate,	3 –	Substantial
---	-----------	-----	-----------	-----	-------------

		L	Т	Р	С
AU23E04	INTRODUCTION TO MACHINE LEARNING	3	0	0	3
	BJECTIVES:				
	arning objective of this course is to prepare the stu			(
1. To diss theory.	eminate the key elements of machine learning and	the ba	asics o	riearni	ng
	y regression analysis and decision tree models for	reares	sion a	nd	
•••	ation problems.				
•	ement SVM or Neural Network model for an appro	priate a	applica	ation ar	nd
	the performance using ensemble models.				
	gn and implement an BBN, HMM for a sequence n element a PGM for any real time application using a				
	tify suitable learning tasks to which Reinforcement				
applied		loann	.g .co.	inquov	
UNIT - I	INTRODUCTION				9
Machine Le	arning – Basic Concepts in Machine Learning – T	pes of	f Mach	ine Lea	arning –
Application	s of Machine Learning - Basics of Learning The	eory –	Conce	ept Le	arning –
Hypothesis	Space - Find-S algorithm - Version spaces -	Bias-	Varian	ce Tra	deoffs -
•	in Machine learning- Model Selection and M	/lodel	Evalua	ation	- Model
	e - Resampling Methods				
UNIT - II	DATA PREPARATION				9
	ng of data – Data preprocessing - Linear Reg				
•	- Logistic regression – Regularization techniques	- LASS	50, Rio	ige an	d Elastic
Net Regress					0
-	SUPERVISED LEARNING I			rioto o	9
	e Learning – ID3 - Univariate Analysis – Bivariate ature reduction – Data Visualization Support V				-
	ession - Neural Networks – Perceptron - Feed-Forv				
•	lassification- Multi Layer Perceptron - Back Propa				•
	Random Forest - Boosting - AdaBoost	9			
UNIT - IV	PROBABILISTIC GRAPHICAL MODELS				9
Introduction	to Graphs - Inference in Graphical Models - E	Bayesia	an Bel	ief Net	works –
Markov Cha	ain – Markov Model - Hidden Markov Models	– Infe	erence	– Le	arning -
	on – Undirected Graphical Models – Markov Ra	andom	Fields	5 – Co	nditional
Independen	ce Properties – Conditional Random Fields.				
UNIT - V	UNSUPERVISED LEARNING AND REINFORCE LEARNING	EMENT			9
	K-means Clustering- Hierarchical Clustering -				
	Gaussian Mixture Model- Cluster Evaluation				
	ent Learning - Components of Reinforcement Learn	0			•
	Learning - Q Learning – Evolutionary techniques –	Genet	ic algo	rithms	in neural
networks.		-		. 45 D	
COURSE O	UTCOMES		UTAL	.: 45 P	ERIODS
	etion of this course, the students will be able to				
	Disseminate the key elements of machine learnin	g and	the ba	sics of	learning
CO1	theory.	•			Ū.
CO2	Apply regression analysis and decision tree mode classification problems.				
CO3	Implement SVM or Neural Network model for an improve the performance using ensemble models		riate a	pplicat	ion and

CO4	Design and implement an BBN, HMM for a sequence model type of application and implement a PGM for any real time application using an open-source tool
CO5	Identify suitable learning tasks to which Reinforcement learning techniques can be applied.

REFERENCES:

- 1. Sridhar S, Vijayalakshmi M, "Machine Learning", First Edition, Oxford University Press, 2021.
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", First Edition, Springer, 2006.
- 3. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 4. Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, Prentice Hall of India, 2005.
- 5. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 6. T. Hastie, R. Tibshirani, J. Friedman, "The Elements of Statistical Learning", Second Edition, Springer, 2008.
- 7. Stephen Marsland, "Machine Learning An Algorithmic Perspective", CRC Press, 2009.
- 8. T.V. Geetha and S. Sendhil kumar, Machine Learning: Concepts, Techniques and Applications, 1st Edition, CRC Press, Taylor and Franics, 2022.

CO-PO Mapping

<u> </u>	COs POs											PSOs		
COS	1 2 3 4 5 6 7 8 9 10 11 12										1	2		
1	3	3	2	3	2	2	2	3	2	3	3	3	2	2
2	3	3	2	3	2	2	2	3	2	3	3	3	2	2
3	3	3	2	3	2	2	2	3	2	3	3	3	2	2
4	3	3	2	3	2	2	2	3	2	3	3	3	2	2
5	3	3	2	3	2	2	2	3	2	3	3	3	2	2
Avg	3	3	2	3	2	2	2	3	2	3	3	3	2	2

OPEN ELECTIVE COURSES (OEC)

AU23901	VEHICLE TECHNOLOGY	L	Т	Ρ	С
		3	0	0	3
	OBJECTIVES:				
	entify various Engine layout and Chassis for vehicles. recognize the construction and working principle of drive line	evet	ome		
	review the knowledge about the constructional feature and wo				le of
	eering Systems, Conventional and Independent Suspension S			n oip	
	demonstrate working principle of braking system and wheels				
	tomobile.				
	understand the need for electrical systems in the vehicle and	worl	king	of	
	Dern vehicles VEHICLE STRUCTURE AND ENGINE				9
-	f Automobiles – Types of Automobiles –Chassis– Frame	-End	nines	\$- Τ\	-
	ion and Working Principle - Two and Four Stroke Engines – S				
	I and CRDI. Emission Norms, Cooling and Lubrication System			5	
UNIT - II	TRANSMISSION SYSTEM				9
	Transmission - Clutch - Types, Gear Box - Types - Wor				
	ion, Automatic Transmission – Fluid Coupling, Torque Convert		rope	eller S	Shaft-
	- Universal Joint, Differential, Final Drive, Rear Axle and its ty	pes			•
UNIT - III	STEERING AND SUSPENSION SYSTEMS	200	اميرا		9
	Geometry- Ackermann and Davis Steering Principle, Steeri , Suspension System- Types – Conventional and Independent				; and
		. 343	pen	SIGIT	9
-	Brakes -Construction and Working. Antilock Braking System	m. T	CS	Tvp	-
	Construction of Wheel. Types of Tyres – Tubeless Tyres and				
its Classif				-	
UNIT - V	AUTOMOTIVE ELECTRICAL AND MODERN VEHICLES				9
	Lead Acid, Lithium Ion Battery. Starting System. Ignition Sy				
	'ehicle Lighting- Head Lamp. Automotive Sensors and its types ric Vehicle–Types- Fuel Cell Technology.	s. Ne	ed I	-or ⊢	lybrid
		τλι	. 15	DED	IODS
COURSE	OUTCOMES		5		
	pleting the course, the student will able to				
CO1	Assess and critically evaluate various Engine and Chassis lay	outs	, det	ermi	ne
	their characteristics, advantages and limitations				
CO2	Interpret different types of drive lines used in Automobile.				
CO3	Examine the working principle of steering systems, convention	nal a	nd		
	independent suspension systems. Apply knowledge on working principles of brake and its subsystem	etor	00		
CO4				oroti	~~
CO5	Demonstrate the working principles of Electrical systems and Vehicles.	new	gen	eralio	JU
TEXT BO					
	al Singh, Automobile Engineering, Standard Publisher, New D	elhi,	201	7	
	. Ramalingam, "Automobile Engineering", Scitech publication (
	. Rajput, A Text–Book of Automobile Engineering, Laxmi Publi	icatio	ons F	Priva	te
	ited, 2015 k Erjavec, Automotive Technology,3rd Edition.				
REFEREI					
	nz Hazler, Modern Vehicle Technology, Butterworth, London, 2	2005			
	dt P.M., Automotive Chassis, Chilton Co., New York, 1990.				

3. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.

4. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007.

5. William H Crouse, "Automotive Mechanics", The McGraw-Hill companies, 2007.

CO-PO Mapping

60 2							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	3	1	2	1	2	2	1	3	3	3
2	3	3	3	2	3	1	2	1	2	2	1	3	3	3
3	3	3	3	2	3	1	2	1	2	2	1	3	3	3
4	3	3	3	2	3	1	2	1	2	2	1	3	3	3
5	3	3	3	2	3	1	2	1	2	2	1	3	3	3
Avg	3	3	3	2	3	1	2	1	2	2	1	3	3	3

		L	Т	Р	С
AU23902	AUTOMOTIVE POWERTRAIN SYSTEM	3	0	0	3
COURSE O	BJECTIVES:			11	
	troduce the various layout of vehicle chassis, engi				
	xpose the need, constructional details and working	princi	ole of v	/arious	
clutc					
	nvisage the working of manual transmission syster				
	xplicate the operating principle of various automati			n syste	ems.
	elate the importance of driveline components, whee	els and	tyres.		
UNIT - I	INTRODUCTION				9
	reference to power plant. IC Engine operation - cl		ations	and wo	orking
• •	 Vehicle layout, operation, advantages and limita 	itions			
UNIT - II	CLUTCH				9
	ts of Transmission system. Purpose and require				
	hes. Principle and operation of single plate coil sp	•		•	clutches,
	Clutch. Introduction to Electromagnetic clutch and i	ts appl	ication	S.	
UNIT - III	GEAR BOX				9
	d requirement of gear box. Construction and work				
	t mesh gear boxes. Construction and working pri				
	ction to Automated Manual Transmission. Compa	irison l	betwee	en conv	entional
	ted Manual Transmission				
	AUTOMATIC TRANSMISSION				9
	n and working principle of Fluid Coupling, a				
	and working principle of Torque Converter. Multis	stage a	nd Pol	yphase	e Torque
	Principle of CVT, advantages and limitations				
UNIT - V	FINAL DRIVE AND DIFFERENTIAL				9
	Torque reaction on rear axle. Propeller shaft, Univ	-			
••	onstruction and working principle of Differential.	Introdu	uction	to Limi	ited Slip
Differential.	Types of wheels and tyres.				
		7	OTAL	.: 45 Pl	ERIODS
COURSE O					
	on of the course the students will be able to				
CO1	Visualize the power flow of various vehicle layout	s.			
CO2	Understand the working principle the various pos	itive er	igagen	nent clu	utches.
CO3	Appraise upon the constructional details and wor	king pr	inciple	of the	manual
603	transmission systems.		-		
CO4	Compare and contrast between various automation	c trans	missio	n syste	ms.
CO5	Summarize the significant driveline components,	wheels	and t	yres.	
TEXTBOOK	IS:		,		
	ut R.K., "A Textbook of Automobile Engineering", L	.axmi F	Publica	tions; S	Second
	on, 2017.			, ,	
	ewton, Steeds and T.K. Garret, "The Motor Vehicle	", 13th	Ediso	n, Butte	erworth
	emann, India 2004.				
3. Willia	am H. Crouse and Donald L. Anglin, "Automotive M	lechan	ics", 1	0th Edi	son,
	raw- Hill Education, 2017.				
REFERENC	-				
1. Davi		hassis	Syste	m and	Vehicle
	d A Crolla, "Automotive Engineering: Powertrain, C	naooic		in and	Vernole
Body	r", Butterworth-Heinemann, 2009.		•		Vernole
Body 2. Ram	/", Butterworth-Heinemann, 2009. alingam K.K, "Automobile Engineering", Sci-Tec B	ook, 2(005.		
Body 2. Ram 3. Hein	r", Butterworth-Heinemann, 2009.	ook, 20 /orth-H)05. Ieinem	ann, 2(

CO 2							POs						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	1	2	1	1	1	1	1	1	2	3	3
2	3	3	3	1	2	1	1	1	1	1	1	2	3	3
3	3	3	3	1	2	1	1	1	1	1	1	2	3	3
4	3	3	1	1	2	1	1	1	1	1	1	2	3	3
5	3	3	3	1	2	1	1	1	1	1	1	2	3	3
Avg	3	3	3	1	2	1	1	1	1	1	1	2	3	3

		L	Т	Р	С
AU23903	VEHICLE SAFETY SYSTEMS	3	0	0	3
	BJECTIVES:				
	troduce vehicle structural crashworthiness and cra	sh tes	ting		
	troduce Occupant safety system				
	et the knowledge in Active Safety in the vehicle and				1.4
	nderstand the fundamentals of sensor and to detec	ct the c	bstacl	es arou	ind the
	cle and the concept of the connected vehicle.				
5. 100 UNIT - I	nderstand SAE Levels of Driving Automation.				9
	safety: Introduction and Types. Active safety: drivi	ng oof	otv oo	ndition	
	ceptibility safety, operating safety. Passive safety: I	•			
•		•		•	•
•	crumble zone, Safety Cage. Optimum crash pulse				ρασι
	ary and movable obstacles. Design for Crashworth				
UNIT - II	PASSIVE SAFETY EQUIPMENTS AND CONVE				9
	eat belt tightener system and importance, collapsib				
	vation. Designing aspects of automotive bumpers				
	d mirror adjustment, central locking system, Tire p	oressu	e ivion	itoring	system,
	system, Automated wiper system.				•
UNIT - III	ACTIVE SAFETY				9
	king system, Stability Control. Adaptive cruise contr				
System. AD	rning, avoidance system, Blind Spot Detection syste	em, Di	iverale	enness	detectio
UNIT - IV			C		9
				la Inta	-
	sensors and looking in sensors, Intelligent vision s bal Positioning System. Vehicle Navigation System				
UNIT - V	AUTONOMOUS VEHICLE			,	9
SAE Levels	of Driving Automation, Level 0 - No Driving Au	utomat	ion, Le	evel 1	– Driver
	Level 2 – Partial Driving Automation, Level 3 – Cor				
	gh Driving Automation, Level 5 – Full Driving Autor			U	
				: 45 P	ERIODS
COURSE O	UTCOMES				
	on of the course the students will be able to				
	Know about the concept of crumble zone and ver	nicle st	ructura	al	
CO1	crashworthiness and crash testing				
CO2	Know the various types of Occupant safety system	n			
CO3	Know about Active Safety in the vehicle and avoid	d crasł	n and f	unctior	of
	ADAS. Understand the fundamentals of sensor and to de	toot +h	o ohot		round
CO4	the vehicle and the concept of the connected veh			acies a	liouna
CO5	Understand SAE Levels of Driving Automation.	1010.			
TEXTBOOK	6				
	Vlacic, Michel Parent, Fumio Harashima – "Intellig	ont Vo	hicle T	echnol	onies
	y and Applications" -Butterworth-Heinemann, 2001			ecilioi	ogies
	ek, HP. Trah, Y. Suzuki, I. Yokomori - "Sensors f	or Auto	omotive	e Annlia	cations "
	EY-VCH Verlag GmbH & Co. 2003	- <i>i</i> i i i i i i i i i i i i i i i i i i		- ' 'PP''	
	t Bosch GmbH - "Safety, Comfort and Convenienc	e Svst	ems"- '	Wilev:	3rd
	1 2007	- , 51			
REFERENC					
	ch, "Automotive Hand Book", 6th edition, SAE, 2004	4.			
	owloski - "Vehicle Body Engineering" - Business bo				

- Ronald. K. Jurgen "Automotive Electronics Handbook" Second edition-McGraw-Hill Inc., 1999.
 ARAI Safety standards

<u> </u>							POs						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	2	2	1	2	1	1	3	3	3
2	3	3	3	3	3	2	2	1	2	1	1	3	3	3
3	3	3	3	3	3	2	2	1	2	1	1	3	3	3
4	3	3	3	3	3	2	2	1	2	1	1	3	3	3
5	3	3	3	3	3	2	2	1	2	1	1	3	3	3
Avg	3	3	3	3	3	2	2	1	2	1	1	3	3	3

AU23904		L	Т	Р	С
	TWO-WHEELER TECHNOLOGY	3	0	0	3
1. Ident 2. Eval 3. Sele	BJECTIVES: tify various Engine layout for Two-wheeler. uate the necessity of Engine subsystems in Two-W ction of Transmission system for Two-wheeler ction of Brakes, Wheels and Tyres for Two-wheeler			L	
	uate the current Two-wheeler technological advanc		S.		
UNIT - I	POWER PLANT				9
engines in T	and Four Stroke SI and CI Engine Construction an wo wheelers, Valve and Port Timing, Scavenging in to E-bike Layout.		0.		
UNIT - II	FUEL SYSTEM, IGNITION SYSTEM AND STAR	TING	SYSTE	EM	9
and Battery	n – Carburetor System, Fuel Injection System. Igni Coil Spark Ignition System, Electronic Ignition System. Starting System - Manual Starting System sting	Syster	n. Co	oling S	Systems.
UNIT - III	STRUCTURES AND POWERTRAIN				9
•••	ames and its Layout, Clutches, Gear box -Types, C nal Drives. Steering Geometry. Front and Re Testing				
UNIT - IV	BRAKES, WHEELS AND TYRES				9
Tubed Tyre Testing UNIT - V	s, Radial Tyres and Cross Ply Tyres, Speed and ELECTRICAL SYSTEM AND RECENT TRENDS		Rating	g. Two	
Instrumenta					9
	tion and Controls on Handle Bar. Types of Head La	mps. I		•	
Adjustment.	Lead Acid Battery. Supercharging of Race Spo	imps. I rts Bił	kes. B	rakes:	Antilock
Adjustment.	••	imps. l rts Bił Study (kes. Bi of Two	rakes: -Whee	Antilock ler.
Adjustment. Braking Sys	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S	imps. l rts Bił Study (kes. Bi of Two	rakes: -Whee	Antilock ler.
Adjustment. Braking Sys	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S UTCOMES	imps. I rts Bik Study (1	kes. Bi of Two	rakes: -Whee	Antilock ler.
Adjustment. Braking Sys COURSE O On success	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S UTCOMES ful completion of this course students will be able to	imps. I rts Bik Study (1 o:	kes. Bi of Two OTAL	rakes: -Whee : 45 P	Antilock ler.
Adjustment. Braking Sys COURSE O On success CO1	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S UTCOMES ful completion of this course students will be able to Understand the assembly and layout of Two Whe	imps. I rts Bik Study (1 o: elers E	kes. Bi of Two OTAL Engine	rakes: -Whee : 45 P	Antilock ler. ERIODS
Adjustment. Braking Sys COURSE O On success	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S UTCOMES ful completion of this course students will be able to	imps. I rts Bił Study (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tes. Bi of Two OTAL Engine	rakes: -Whee : 45 P vo whe	Antilock ler. ERIODS
Adjustment. Braking Sys COURSE O On success CO1 CO2	Lead Acid Battery. Supercharging of Race Spo tem. Catalytic Converters, Emission Norms, Case S UTCOMES ful completion of this course students will be able to Understand the assembly and layout of Two Whe Understand the Ignition system and Fuel system i Understand the different types of frames, Suspens Transmission systems. Understand the working of Brakes, Types of Whee wheelers.	imps. I rts Bil Study (2 b: elers E nvolve sion sy els and	ces. Bi of Two OTAL Engine d in two vstems d Tyres	rakes: -Whee : 45 P vo whe and s in Tw	Antilock ler. ERIODS elers.
Adjustment. Braking Sys COURSE O On success CO1 CO2 CO3	Lead Acid Battery. Supercharging of Race Spotem. Catalytic Converters, Emission Norms, Case S UTCOMES ful completion of this course students will be able to Understand the assembly and layout of Two When Understand the Ignition system and Fuel system i Understand the different types of frames, Suspens Transmission systems. Understand the working of Brakes, Types of When wheelers. Understand the basic Auto Electrical systems and wheelers.	imps. I rts Bil Study (2 b: elers E nvolve sion sy els and	ces. Bi of Two OTAL Engine d in two vstems d Tyres	rakes: -Whee : 45 P vo whe and s in Tw	Antilock ler. ERIODS elers.

COs							POs						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	1	2	2	1	1		1	1	1		3	3	3
2	2	1	2	2	1	1		1	1	1		3	3	3
3	2	1	2	2	1	1		1	1	1		3	3	3
4	2	1	2	2	1	1		1	1	1		3	3	3
5	2	1	2	2	1	1		1	1	1		3	3	3
Avg	2	1	2	2	1	1		1	1	1		3	3	3

1 –	Slight,	2 –	Moderate,	3 –	Substantial
-----	---------	-----	-----------	-----	-------------

UC23E01 ENGINEERING ENTREPRENEURSHIP DEVELOPMENT L T P C

2023

COURSE OBJECTIVES:

- 1. Learn basic concepts in entrepreneurship, develop mind-set and skills necessary to explore entrepreneurship
- 2. Apply process of problem opportunity identification and validation through human centred approach to design thinking in building solutions as part of engineering projects
- 3. Analyse market types, conduct market estimation, identify customers, create customer persona, develop the skills to create a compelling value proposition and build a Minimum Viable Product
- 4. Explore business models, create business plan, conduct financial analysis and feasibility analysis to assess the financial viability of a venture ideas & solutions built with domain expertise
- 5. Prepare and present an investible pitch deck of their practice venture to attract stakeholders

MODULE – I: ENTREPRENEURIAL MINDSET

Introduction to Entrepreneurship: Definition – Types of Entrepreneurs – Emerging Economies – Developing and Understanding an Entrepreneurial Mindset – Importance of Technology Entrepreneurship – Benefits to the Society.

Case Analysis: Study cases of successful & failed engineering entrepreneurs - Foster Creative Thinking: Engage in a series of Problem-Identification and Problem-Solving tasks

MODULE – II: OPPORTUNITIES

Problems and Opportunities – Ideas and Opportunities – Identifying problems in society – Creation of opportunities – Exploring Market Types – Estimating the Market Size, - Knowing the Customer and Consumer - Customer Segmentation - Identifying niche markets – Customer discovery and validation; Market research techniques, tools for validation of ideas and opportunities

Activity Session: Identify emerging sectors / potential opportunities in existing markets - Customer Interviews: Conduct preliminary interviews with potential customers for Opportunity Validation - Analyse feedback to refine the opportunity.

MODULE – III: PROTOTYPING & ITERATION

Prototyping – Importance in entrepreneurial process – Types of Prototypes - Different methods – Tools & Techniques.

Hands-on sessions on prototyping tools (3D printing, electronics, software), Develop a prototype based on identified opportunities; Receive feedback and iterate on the prototypes.

MODULE – IV: BUSINESS MODELS & PITCHING

Business Model and Types - Lean Approach - 9 block Lean Canvas Model - Riskiest Assumptions in Business Model Design – Using Business Model Canvas as a Tool – Pitching Techniques:

4L,8P

4L.8P

4L,8P

4L.8P

Importance of pitching - Types of pitches - crafting a compelling pitch – pitch presentation skills - using storytelling to gain investor/customer attention.

Activity Session: Develop a business model canvas for the prototype; present and receive feedback from peers and mentors - Prepare and practice pitching the business ideas- Participate in a Pitching Competition and present to a panel of judges - receive & reflect feedback

MODULE - V: ENTREPRENEURIAL ECOSYSTEM

Understanding the Entrepreneurial Ecosystem – Components: Angels, Venture Capitalists, Maker Spaces, Incubators, Accelerators, Investors. Financing models – equity, debt, crowdfunding, etc, Support from the government and corporates. Navigating Ecosystem Support: Searching & Identifying the Right Ecosystem Partner – Leveraging the Ecosystem - Building the right stakeholder network

Activity Session: Arrangement of Guest Speaker Sessions by successful entrepreneurs and entrepreneurial ecosystem leaders (incubation managers; angels; etc), Visit one or two entrepreneurial ecosystem players (Travel and visit a research park or incubator or makerspace or interact with startup founders).

TOTAL: 60 PERIODS

4L,8P

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

- CO1: Develop an Entrepreneurial Mind-set and Understand the Entrepreneurial Ecosystem Components and Funding types
- CO2: Comprehend the process of opportunity identification through design thinking, identify market potential and customers
- CO3: Generate and develop creative ideas through ideation techniques
- CO4: Create prototypes to materialize design concepts and conduct testing to gather feedback and refine prototypes to build a validated MVP
- CO5: Analyse and refine business models to ensure sustainability and profitability Prepare and deliver an investible pitch deck of their practice venture to attract stakeholders

REFERENCES:

- 1. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha (2020). Entrepreneurship, McGrawHill, 11th Edition
- Bill Aulet (2024). Disciplined Entrepreneurship: 24 Steps to a Successful Startup. John Wiley & Sons.
- 3. Bill Aulet (2017). Disciplined Entrepreneurship Workbook. John Wiley & Sons.
- 4. Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business
- 5. Blank, S. G., & Dorf, B. (2012). The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company. K&S Ranch

- 6. Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons
- 7. Marc Gruber & Sharon Tal (2019). Where to Play: 3 Steps for Discovering Your Most Valuable Market Opportunities. Pearson.